Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Constraint chance      408.B
Constraint qualification Guignard      292.B
Constraint qualification Slater      292.B
Constraint set (of a minimization problem)      292.A
Constraint unilateral      440.A
Constructibility, axiom of (in axiomatic set theory)      33.D
Constructible (set in axiomatic set theory)      33.D
Constructible sheaf      16.AA
Constructible sheaf locally, constant      16.AA
Construction bar (of an Eilenberg — MacLane complex)      70.F
Construction geometric, problem      179.A
Construction GNS      308.D
Construction group measure space      136.F
Construction impossible, problem      179.A
Construction possible, problem      179.A
Construction problem (of class field tower)      59.F
Construction W- (of an Eilenberg — MacLane complex)      70.F
Constructive field theory      150.F
Constructive method      156.D
Constructive ordinal numbers      81.B
Consumer’s risk      404.C
Contact element      428.E
Contact element in a space with a Lie transformation group      110.A
Contact form      110.E
Contact manifold      110.E
Contact metric structure      110.E
Contact network      282.B
Contact pair (in circle geometry)      76.C
Contact process      340.C
Contact structure      105.Y
Contact transformations      82 App. Table
Contact transformations quantized      274.F
Contact, thermal      419.A
Contain      381.A
Contain physically      351.K
Content (of a tolerance region)      399.R
Content (of a tolerance region) Jordan      270.G
Content (of a tolerance region) mean      399.R
Context-free grammar      31.D
Context-sensitive grammar      31.D
Conti, Roberto      290.r
Contiguous      399.M
Contingency table      397.K 400.K
Continuable, analytically      198.I
Continuation analytic      198.G
Continuation analytic, along a curve      198.I
Continuation analytic, in the wider sense      198.0
Continuation direct analytic      198.G
Continuation harmonic      193.M 198.G
Continuation method      301.M
Continuation theorem Hartogs      21.F
Continuation theorem Remmert — Stein      23.B
Continuation theorem Riemann      21.F
Continuation theorem unique      323.J
Continued fractions      83.A
Continued fractions finite      83.A
Continued fractions infinite      83.A
Continued fractions mixed periodic      83.C
Continued fractions normal      83.E
Continued fractions pure periodic      83.C
Continued fractions recurring      83.B
Continued fractions simple      83.A
Continuity (*), generalized absolute      100.C
Continuity (*), generalized absolute in the restricted sense      100.C
Continuity absolute, space of      390.E
Continuity axioms of (in geometry)      155.B
Continuity Dedekind axiom of (for real numbers)      355.A
Continuity equation of (for a fluid)      205.A
Continuity equation of (for electromagnetics)      130.A 204.B
Continuity Hartogs theorem of      21.H
Continuity interval of (for a probability distribution)      341.C
Continuity local      45.F
Continuity modulus of (of a function)      84.A
Continuity modulus of, of kth order (of a continuous function)      336.C
Continuity of real numbers      294.E
Continuity principle for analytic functions of several complex variables      21.H
Continuity principle in potential theory      338.C
Continuity principle quasi- (in potential theory)      338.I
Continuity properties of      85.A
Continuity property for Cech theory      201.M
Continuity requirement, variational principles with relaxed      271.G
Continuity theorem Abel (for Dirichlet series)      339.B
Continuity theorem Abel (for power series)      121.D
Continuity theorem Levy      341.F
Continuity uniform      45.F
Continuous $\mu$-absolutely      380.C
Continuous (additive interval function)      380.B
Continuous (flow)      136.D
Continuous (function of ordinal numbers)      312.C
Continuous (mapping)      84.A 425.G
Continuous absolutely (function)      100.C
Continuous absolutely (mapping in the plane)      246.H
Continuous absolutely (measure)      270.L
Continuous absolutely (set function)      380.C
Continuous absolutely (vector measure)      443.G
Continuous absolutely, (*)      100.C
Continuous absolutely, in the restricted sense      100.C
Continuous absolutely, in the sense of Tonelli      246.C
Continuous action (in topological dynamics)      126.B
Continuous additive interval function      380.B
Continuous analytic capacity      164.J
Continuous arc(s)      93.B
Continuous cocycle      200.N
Continuous completely (operator)      68.D
Continuous distribution (probability theory)      341.D
Continuous dynamical system      126.B
Continuous equi-      435.D
Continuous equi-, semigroup of class $(C^0)$      378.B
Continuous flow (in ergodic theory)      136.D
Continuous flow (on a topological space)      126.B
Continuous from the left      84.B
Continuous from the right      84.B
Continuous functions      84
Continuous functions absolutely      100.C
Continuous functions generalized absolutely      100.C
Continuous functions lower semi-      84.C
Continuous functions lower semi- (at a point)      84.C
Continuous functions on a metric space      84.C
Continuous functions piecewise      84.B
Continuous functions quasi-      338.I
Continuous functions right      84.B
Continuous functions semi- (at a point)      84.C
Continuous functions uniformly (in a metric space)      84.A
Continuous functions upper semi-      84.C
Continuous functions upper semi- (at a point)      84.C
Continuous generalized absolutely      100.C
Continuous geometry      85
Continuous geometry irreducible      85.A
Continuous geometry reducible      85.A
Continuous homomorphism (between topological groups)      423.J
Continuous homomorphism open      423.J
Continuous hypo-      424.Q
Continuous image      425.G
Continuous in probability      407.A
Continuous in the mean      217.M
Continuous in the mean (stochastic process)      407.A
Continuous left      84.B
Continuous mapping      425.G
Continuous mapping space of      435.D
Continuous mapping strongly      437.A
Continuous mapping uniformly (of metric spaces)      273.I
Continuous mapping uniformly (of uniform spaces)      436.E
Continuous piecewise, function      84.B
Continuous plane curve      93.B
Continuous representation strongly (of a topological group)      69.B
Continuous representation weakly (of a topological group)      69.B
Continuous right      84.B
Continuous semiflow      126.B
Continuous semimartingale      406.B
Continuous separately (bilinear mapping)      424.Q
Continuous spectrum      390.A
Continuous spectrum absolutely      390.E
Continuous spectrum of an integral equation      217.J
Continuous spin      258.C
Continuous state branching process      44.E
Continuous strongly (function with values in a Banach space)      37.K
Continuous tensor product      377.D
Continuous uniformly      84.A 273.I 436.E
Continuous uniformly, on a subset      436.G
Continuous weakly (function with values in a Banach space)      37.K
Continuous with respect to the parameter (a distribution)      125.H
Continuously differentiable function, n-times      106.K
Continuum      79.D
Continuum cardinal number of      49.A
Continuum Hypothesis      49.D
Continuum hypothesis consistency of the axiom of choice and      33.D
Continuum hypothesis generalized      49.D
Continuum hypothesis independence of the axiom of choice and      33.D
Continuum indecomposable      79.D
Continuum irreducible      79.D
Continuum Peano      93.D
Contour of an integration      94.D
Contour(s) additivity of (in the curvilinear integral)      94.D
Contract, annuity      214.B
Contracted tensor      256.L
Contractible space      79.C 202.D
Contractible space locally      79.C 202.D
Contractible space locally, at a point      79.C
Contraction (linear operator)      37.C
Contraction (of a graph)      186.E
Contraction (of a mapping)      381.C
Contraction (of a tensor)      256.L
Contraction (ofamatroid)      66.H
Contraction principle      286.B
Contraction sub-      186.E
Contractive      251.N
Contractive purely      251.N
Contractive purely, part      251.N
Contradiction      411.I
Contradictory formal system      411.I
Contragredient (of a linear mapping)      256.G
Contragredient representation      362.E
Contrast elementary      102.C
Contrast normalized      102.C
Contrast treatment      102.C
Contravariant functor      52.H
Contravariant index (of a component of a tensor)      256.J
Contravariant of order r and covariant of order s      108.D
Contravariant spinor      258.B
Contravariant tensor algebra      256.K
Contravariant tensor alternating      256.N
Contravariant tensor field of order r      105.O
Contravariant tensor of degree p      256.J
Contravariant tensor symmetric      256.N
Contravariant vector      256.J
Contravariant vector field      105.O
Control admissible      405.A
Control bang-bang      405.C
Control chart      404.B
Control feedback      405.C
Control impulse      405.E
Control inventory      227
Control limit lower      404.F
Control limit upper      404.B
Control local      102.A
Control optimal      46.D 86.B C
Control problem, time optimal      86.F
Control quality      404.A
Control space (in static model in catastrophe theory)      51.B
Control stochastic      342.A 405
Control theory      86
Control time-optimal      86.F
Control unit      75.B
Controllability      86.C
Controlled stochastic differential equation      405.A
Controlled tubular neighborhood system      418.G
Convention Einstein      256.J
Convention Einstein summation      417.B
Convention Maxwell      51.F
Convention perfect delay      51.F
Converge (filter)      87.I
Converge (in a metric space)      273.D
Converge (in a topological space)      87.E
Converge (infinite product)      379.G
Converge (net)      87.H
Converge (sequence of lattices)      182.B
Converge (sequence of numbers)      87.B 355.B
Converge (series)      379.A
Converge almost certainly      342.D
Converge almost everywhere      342.D
Converge almost surely      342.D
Converge in distribution      168.B 342.D
Converge in probability      342.D
Converge in the mean of order p      342.D
Converge in the mean of power p      168.B
Converge strongly      37.B
Converge uniformly (in a uniform space)      435.A
Converge weakly (in a normed linear space)      37.E
Converge weakly (in a topological linear space)      424.H
Converge with probability      342.D
Convergence      87
Convergence (of a filter)      87.I
Convergence (of a net)      87.H
Convergence (of probability measures)      341.F
Convergence (of truncation errors)      303.B
Convergence abscissa of (of a Dirichlet series)      121.B
Convergence abscissa of (of a Laplace transform)      240.B H
Convergence absolute, abscissa of (Dirichlet series)      121.B
Convergence absolute, abscissa of (of a Laplace transform)      240.B
Convergence associated, radii      21.B
Convergence asymptotic      168.B
Convergence axis of      240.B
Convergence circle of (of a power series)      339.A
Convergence criterion for positive series      App. A Table
Convergence domain (of a power series)      21.B
Convergence exponent of      429.B
Convergence generalized      331.C
Convergence in measure      168.B
Convergence method      354.B
Convergence norm resolvent      331.C
Convergence radius of (of a power series)      339.A
Convergence relative uniform star      310.F
Convergence simple, abscissa of (of a Dirichlet series)      121.B
Convergence star      87.K
Convergence strong (of operators)      251.C
Convergence strong resolvent      331.C
Convergence theorem Lebesgue      221.C
Convergence theorem of martingales      262.B
Convergence theorem on distributions      125.G
Convergence uniform      435
Convergence uniform (of a series)      435.A
Convergence uniform (of operators)      251.C
Convergence uniform, abscissa of (of a Dirichlet series)      121.B
Convergence uniform, abscissa of (of a Laplace transform)      240.B
Convergence uniform, on compact sets      435.C
Convergence weak (of a sequence of submodules)      200.J
Convergence weak (of operators)      251.C
Convergence weak (of probability measures)      341.F
Convergence Weierstrass criterion for uniform      435.A
Convergent (continued fraction)      83.A
Convergent (double series)      379.E
Convergent (filtration)      200.J
Convergent (infinite integral)      216.E
Convergent (o)-      87.L
Convergent (o)-star      87.L
Convergent (sequence)      87.B 355.B
Convergent (series)      379.A
Convergent absolutely (double series)      379.E
Convergent absolutely (infinite product)      379.G
Convergent absolutely (Laplace — Stieltjes integral)      240.B
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте