Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Equipollent sets      49.A
Equipotent sets      49.A
Equipotential surface      193.J
Equivalence $C^r$-      126.B
Equivalence (in a category)      52.D
Equivalence (of categories)      52.H
Equivalence (of complexes)      200.H
Equivalence (of coverings)      91.A
Equivalence anti- (of categories)      52.H
Equivalence chain      200.H
Equivalence class      135.B
Equivalence class linear (of divisors)      16.M
Equivalence cochain      200.F
Equivalence combinatorial      65.A
Equivalence CR-      344.A
Equivalence homotopy      202.F
Equivalence Kakutani      136.F
Equivalence Lax, theorem      304.F
Equivalence natural      52.J
Equivalence principle of (in insurance mathematics)      214.A
Equivalence principle of (in physics)      359.D
Equivalence properties      135.A
Equivalence relations      135 358.A
Equivalence relations proper (in an analytic space)      23.E
Equivalence simple homotopy      65.C
Equivalence topological      126.B
Equivalent $C^r$-      126.B
Equivalent $\chi$-      431.F
Equivalent $\Gamma$- (points)      122.A
Equivalent $\mathfrak D$-linearly, divisors      9.F
Equivalent $\Omega$-      126.H
Equivalent (additive functionals)      261.E
Equivalent (arc)      246.A
Equivalent (coordinate bundle)      147.B
Equivalent (covering)      91.A
Equivalent (extension by a $C*-algebra)      36.J
Equivalent (fiber bundle)      147.B
Equivalent (formula)      411.E
Equivalent (functions with respect to a subset of $C^n$)      21.E
Equivalent (G-structures)      191.A
Equivalent (knot)      235.A
Equivalent (linear representation)      362.C
Equivalent (measure)      225.J
Equivalent (methods of summation)      379.L
Equivalent (PL)      65.D
Equivalent (proposition)      411.B
Equivalent (quadratic form)      348.A
Equivalent (quadratic irrational numbers)      182.G
Equivalent (relation)      135.B
Equivalent (space group)      92.A
Equivalent (stochastic process)      407.A
Equivalent (surfaces in the sense of Frechet)      246.I
Equivalent (system of neighborhoods)      425.E
Equivalent (unfolding)      51.E
Equivalent (unitary representation)      437.A
Equivalent (valuation)      439.B
Equivalent (word)      31.B
Equivalent affinity      7.E
Equivalent algebraically (cycles)      16.R
Equivalent algebraically, to      016.P
Equivalent arithmetically      92.B 276.D
Equivalent C-      114.H
Equivalent certainty      408.B
Equivalent chain      200.C
Equivalent combinatorially      65.A
Equivalent conformally      77.A 191.B 367.A
Equivalent countably (under a nonsingular bimeasurable transformation)      136.C
Equivalent elementarily      276.D
Equivalent fiber homotopy (vector bundles)      237.I
Equivalent finitely (under a nonsingular bimeasurable transformation)      136.C
Equivalent flow      126.B
Equivalent geometrically      92.B
Equivalent homotopy (systems of topological spaces)      202.F
Equivalent k- ($C^{\infty}$-manifolds)      114.F
Equivalent linearly (divisors)      16.M 72.F
Equivalent locally (G-structure)      191.H
Equivalent numerically (cycles)      16.Q
Equivalent properly (binary quadratic forms)      348.M
Equivalent pseudoconformally      344.A
Equivalent quasi- (unitary representations)      437.C
Equivalent rationally (cycles)      16.R
Equivalent right      51.C
Equivalent simple homotopy      65.C
Equivalent stably (vector bundles)      237.B
Equivalent stably fiber homotopy (vector bundles)      237.I
Equivalent topologically      126.B H
Equivalent uniformly (uniform spaces)      436.E
Equivalent unitarily (self-adjoint operators)      390.G
Equivariant Atiyah — Singer index theorem      237.H
Equivariant cohomology      431.D
Equivariant J-group      431.F
Equivariant J-homomorphism      431.F
Equivariant K-group      237.H
Equivariant mapping (map)      431.A
Equivariant point (of a mapping)      153.B
Equivariant point index (of a mapping)      153.B
Eratosthenes      187 297.B
Eratosthenes’ sieve      297.B
Erbacher, Joseph A.      365.H
Erdelyi, Artur      25.r 30.r 220.r 254.r 389.r App. A Table
Erdoes, Paul      4.A 45.r 123.C r
Erdos theorem, Chung-      342.B
Ergodic (Markov chain)      260.J
Ergodic (transformation)      136.B
Ergodic capacity      213.F
Ergodic class      260.B
Ergodic class positive recurrent      260 B
Ergodic decomposition (of a Lebesgue measure space)      136.H
Ergodic homeomorphism strictly      136.H
Ergodic homeomorphism uniquely      136.H
Ergodic hypothesis      136.A 402.C
Ergodic information source      213.C
Ergodic lemma, maximal      136.B
Ergodic Szemeredi theorem      136.C
Ergodic theorem      136.A B
Ergodic theorem Abelian      136.B
Ergodic theorem dominated      136.B
Ergodic theorem individual      136.B
Ergodic theorem local      136.B
Ergodic theorem mean      136.B
Ergodic theorem multiplicative      136.B
Ergodic theorem pointwise      136.B
Ergodic theorem ratio      136.B
Ergodic theorem subadditive      136.B
Ergodic theory      136 342.A
Erlang distribution, k-      260.I
Erlang, A.K.      260.H 307.C
Erlangen program      137
Ernst equation      359.D
Ernst, B.      359.E
Ernst, Bruno      424.r
Error accumulated      138.C
Error analysis      138
Error analysis backward      302.B
Error burst      63.E
Error constant      303.E
Error discretization      303.B
Error estimate, one-step-two-half-steps      303.D
Error function      167.D App. Table
Error local truncation      303.E
Error matrix      405.G
Error mean square      399.E 403.E
Error of input data      138.B
Error of the first kind      400.A
Error of the second kind      400.A
Error probability      213.D
Error propagation of      138.C
Error roundoff      138.B 303.B
Error space      403.E
Error sum of squares (with n — s degree of freedom)      403.E
Error term      403.D
Error theory of      138.A
Error truncation      138.B 303.B
Error vector      102.A
Error(s)      138.A
Error-correcting      63.A
Error-correcting capability      63.B
Error-detecting      63.A
Escobal, Pedro Ramon      309.r
Eskin, Grigorii Il’ich      274.C I
Essential (conformal transformation group)      364.F
Essential part      260.I
Essential singularity (of a complex function)      198.D
Essential singularity (of an analytic function in the wider sense)      198.P
Essential spectrum      390.E H
Essential support (of a distribution)      274.D
Essential supremum (of a measurable function)      168.B
Essentially bounded (measurable function)      168.B
Essentially complete class      398.B
Essentially normal      390.I
Essentially self-adjoint      251.E 390.I
Essentially singular point (with respect to an analytic set)      21.M
Essentially unitary      390.I
Estermann, Theodor      4.C D
Estes stimulus sampling model      346.G
Estes, William Kaye      346.G
Estimable (parametric function)      399.C
Estimable parameter      403.E
Estimable parameter linearly      403.E
Estimate      399.B
Estimate a priori      323.C
Estimate nonrandomized      399.B
Estimate one-step-two-half-steps error      303.D
Estimate Schauder      323.C
Estimating equation      399.P
Estimating function      399.P
Estimating function likelihood      399.M
Estimating parameters, design for      102.M
Estimation Hadamard      App. A Table
Estimation interval      399.Q 401.C
Estimation point      371.H 399.B 401.C
Estimation region      399.O
Estimation space      403.E
Estimation statistical      399.A App. Table
Estimator      399.B
Estimator asymptotically efficient      399.N
Estimator BAN      399.K N
Estimator based on an estimating function      399.P
Estimator Bayes      399.F
Estimator best asymptotically normal      399.K
Estimator best invariant      399.I
Estimator best linear unbiased      403.E
Estimator CAN      399.K
Estimator consistent      399.K
Estimator consistent and asymptotically normal      399.K
Estimator efficient      399.D
Estimator first-order asymptotic efficient      399.O
Estimator first-order efficient      399.O
Estimator generalized least squares      403.E
Estimator invariant      399.I
Estimator kth-order AMU      399.O
Estimator kth-order asymptotically median unbiased      399.O
Estimator L-      371.H
Estimator least squares      403.E
Estimator M-      371.H
Estimator maximum likelihood      399.M
Estimator mean unbiased      399.C
Estimator median unbiased      399.C
Estimator ML      399.M
Estimator modal unbiased      399.C
Estimator moment method      399.L
Estimator Pitman      399.G
Estimator R-      371.H
Estimator randomized      399.B
Estimator ratio      373.C
Estimator state      86.E
Estimator Stein shrinkage      399.G
Estimator superefficient      399.N
Estimator UMVunbiased      399.C
Estimator unbiased      399.C
Estimator uniformly minimum variance unbiased      399.C
Eta function (of a Riemann manifold)      391.L
Eta function Dedekind      328.A
Etale morphism      16.F
Etale neighborhood      16.AA
Etale site      16.AA
Etale topology      16.AA
Ethier, Stewart N.      263.r
Euclid      13.R 24.C 35.A 67.L 70.B 93.A 139.A B E C B
Euclid axiom      139.A
Euclid ring      67.L
Euclidean algorithm      297.A
Euclidean algorithm of polynomials      337.D
Euclidean cell complex      70.B
Euclidean complex      70.B
Euclidean connection      364.B
Euclidean connection manifold with      109
Euclidean distance      139.E
Euclidean field      150.F
Euclidean field theory      150.F
Euclidean geometry      139
Euclidean geometry in the wider sense      139.B
Euclidean geometry n-dimensional      139.B 181
Euclidean geometry non- $\rightharpoonup$ non-Euclidean geometry      285
Euclidean group, locally      423.M
Euclidean Markov field theory      150.F
Euclidean method      150.F
Euclidean polyhedron      70.B
Euclidean simplicial complex      70.B
Euclidean space form      412.H
Euclidean space locally      259.B 425.V
Euclidean space non-      285.A
Euclidean space theorem on invariance of dimension of      117.D
Euclidean space(s)      140
Euclidean type (building)      13.R
Eudoxus      20 187
Euler angles      90.C App. Table
Euler characteristic (of a finite Euclidean cellular complex)      201.B
Euler class (of M)      201.N
Euler constant      174.A
Euler criterion      297.H
Euler differential equation (dynamics of rigid bodies)      271.E
Euler equation (calculus of variations)      46.B
Euler equation (of a perfect fluid)      204.E
Euler equation of motion (of a perfect fluid)      205.A
Euler formula      131.G
Euler function      295.C
Euler graph      186.F
Euler infinite product expansion      450.B
Euler integral of the first kind      174.C
Euler integral of the second kind      174.A
Euler linear ordinary differential equation      App. A Table
Euler method of describing the motion of a fluid      205.A
Euler method of numerical solution of ordinary differential equations      303.E
Euler method of summation      379.P
Euler method summable by      379.P
Euler number      177.C 201.B App. Table
Euler path      186.F
Euler polynomial      177.C
Euler product      450.B
Euler relation      419.B
Euler square      241.B
Euler summation formula      295.E
Euler theorem on polyhedra      201.F
Euler transformation (of infinite series)      379.I
Euler — Lagrange differential equation      46.B
Euler — Maclaurin formula      379.J
Euler — Poincare characteristic      16.E 201.B
Euler — Poincare class      56.B
Euler — Poincare class (of a manifold)      56.F
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте