Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Group generalized solvable      190.K
Group Grothendieck (of a compact Hausdorff space)      237.B
Group Grothendieck (of a ring)      237.J
Group h-cobordism (of homotopy n-spheres)      114.I App. Table
Group Hamilton      151.B
Group Hausdorff topological      423.B
Group Hilbert modular      32.G
Group holonomy      80.D 364.E
Group homogeneous holonomy      364.E
Group homogeneous Lorentz      359
Group homology (of a chain complex)      201.B
Group homology (of a group)      200.M
Group homology (of a Lie algebra)      200.O
Group homology (of a polyhedron)      201.D
Group homotopy      202.J
Group hyper-      190.P
Group icosahedral      151.G
Group ideal class      14.E 67.K
Group ideal, modulo m*      14.H
Group idele      6.C
Group idele class      6.D
Group indecomposable      190.L
Group inductive limit      210.C
Group inductive system of      210.C
Group inertia (of a finite Galois extension)      257.D
Group inertia (of a prime ideal)      14.K
Group infinite      190.C
Group infinite classical      147.I 202.V
Group infinite orthogonal      202.V
Group infinite symplectic      202.V
Group infinite unitary      202.V
Group inhomogeneous Lorentz      359
Group integral homology (of a polyhedron)      201.D
Group integral homology (of a simplicial complex)      201.C
Group integral singular homology      201.E
Group isotropy      362.B
Group J-      237.I
Group k-      13.A
Group K- (of a compact Hausdorff space)      237.B
Group Klein four-      151.G
Group Kleinian      122.C 243.A
Group knot      235.B
Group L-      450.N
Group lattice      182.B
Group lattice (of a crystallographic group)      92.A
Group lattice-ordered Archimedean      243.G
Group Lie      249.A 423.M
Group Lie transformation      431.C
Group like      203.F
Group linear fractional      60.B
Group linear isotropy (at a point)      199.A
Group linear simple      151.I
Group link      235.D
Group little      258.C
Group local Lie      423.L
Group local Lie, of local transformations      431.G
Group local one-parameter, of local transformations      105.N
Group locally Euclidean      423.M
Group Lorentz      60.J 258 359.B
Group magnetic      92.D
Group manifold (of a Lie transformation group)      110.A
Group Mathieu      151.H
Group matric      226.B
Group matrix      226.B
Group maximally almost periodic      18.I
Group measure space construction      136.F
Group minimally almost periodic      18.I
Group minimization problem      215.C
Group mixed      190.P
Group Mobius transformation      76.A
Group modular      122.D
Group monodromy (of a system of linear ordinary differential equations)      253.B
Group monodromy (of an n-fold covering)      91.A
Group monothetic      136.D
Group multiplicative      190.A
Group multiplicative (of a field)      149.A 190.B
Group Neron — Severi (of a variety)      15.D 16.P
Group nilpotent      151.C 190J
Group object (in a category)      52.M
Group octahedral      151.G
Group of affine transformations      7.E
Group of automorphisms (of a group)      190.D
Group of canonical transformations      271.F
Group of classes of algebraic correspondences      9.H
Group of collineations      343.D
Group of congruence classes modulo m*      14.H
Group of congruent transformations      285.C
Group of differentiable structures on combinatorial spheres      App. A Table
Group of inner automorphisms (of a group)      190.D
Group of inner automorphisms (of a Lie algebra)      248.H
Group of Janko- Ree type      151.J
Group of motions      139.B
Group of motions in the wider sense      139.B
Group of orientation-preserving diffeomorphisms      114.I
Group of oriented differentiable structures on a combinatorial sphere      114.I
Group of outer automorphisms (of a group)      190.D
Group of outer automorphisms (of a Lie algebra)      248.H
Group of projective transformations      343.D
Group of quotients (of a commutative semigroup)      190.P
Group of Ree type      151.J
Group of the first kind      122.C
Group of translations      7.E 258.A
Group of twisted type      151.I
Group one-parameter semi-, of class $C^0$      378.B
Group one-parameter sub-      249.Q
Group one-parameter, of transformations (of a $C^{\infty}$- manifold)      105.N
Group one-parameter, of transformations of class $C^r$      126.B
Group ordered      243.G
Group ordered additive      439.B
Group oriented cobordism      114.H
Group orthogonal      60.I 139.B 151.I
Group orthogonal (over a field with respect to a quadratic form)      60.K
Group orthogonal (over a noncommutative field)      60.O
Group orthogonal transformation      60.I
Group p-      151.B
Group p-torsion, of exceptional groups      App. A Table
Group pair (of topological Abelian groups)      422.I
Group pair (of topological Abelian groups) orthogonal      422.I
Group periodic      2.A
Group permutation      190.B
Group permutation, of degree n      151.G
Group Picard (of a commutative ring)      237J
Group Poincare      170258.A
Group point (of a crystallographic group)      92.A
Group polychromatic      92.D
Group principal isotropy      431.C
Group profinite      210.C
Group projective class      200.K
Group projective general linear      60.B
Group projective limit      210.C
Group projective special linear      60.B O
Group projective special unitary      60.H
Group projective symplectic      60.L
Group projective system of      210.C
Group projective unitary      60.F
Group proper Lorentz      60.J 258.A 359.B
Group proper orthogonal      60.I 258.A
Group pseudo- (of topological transformations)      105.Y
Group qth homology      201.B
Group quasi-      190.P
Group quasi-Fuchsian      234.B
Group quaternion      151.B
Group quaternion unimodular      412.G
Group quotient      190.C
Group quotient (of a topological group)      423.E
Group ramification (of a finite Galois extension)      257.D
Group ramification (of a prime ideal)      14.K
Group rational cohomology      200.O
Group reductive      13.Q
Group Ree      151.I
Group regular polyhedral      151.G
Group relative homotopy      202.K
Group relative singular homology      201.L
Group renormalization      111.A
Group restricted holonomy      364.E
Group restricted homogeneous holonomy      364.E
Group Riemann — Roch      366.D
Group Riesz      36.H
Group ring (of a compact group)      69.A
Group rotation      60.I 258.A
Group scheme      16.H
Group Schottky      234.B
Group semi-      190.P 396.A
Group separated topological      423.B
Group sequence of factor (of a normal chain)      190.G
Group shape      382.C
Group Siegel modular (of degree n)      32.F
Group simple      190.C
Group simply connected (isogenous to an algebraic group)      13.N
Group singular homology      201.G L
Group solvable      151.D 190.I
Group space      92.A
Group special Clifford      61.D
Group special linear      60.B
Group special linear (over a noncommutative field)      60.O
Group special orthogonal      60.I K
Group special unitary      60.F H O
Group spinor      60.I 61.D
Group stability      362.B
Group stable homotopy      202.T
Group stable homotopy (of classical group)      202.V
Group stable homotopy (of the Thom spectrum)      114.G
Group Steinberg (of a ring)      237.J
Group structure (of a fiber bundle)      147.B
Group supersolvable      151.D
Group Suzuki      151.I
Group symmetric      190.B
Group symmetric, of degree n      151.G
Group symplectic      60.L 151.I
Group symplectic (over a noncommutative field)      60.O
Group symplectic transformation      60.L
Group system      235.B
Group Tate — Shafarevich      118.D
Group tetrahedral      151.G
Group theorem (on fractional ideals)      67.J
Group theoretic approach      215.C
Group Tits simple      151.I
Group topological      423
Group topological Abelian      422.A
Group topological transformation      431.A
Group torsion      2.A
Group torsion (of a finite simplicial complex)      201.B
Group torus      422.E
Group total monodromy      418.F
Group totally ordered      243.G
Group totally ordered additive      439.B
Group transformation      431 App. Table
Group transitive permutation      151.H
Group type I      308.L 437.E
Group underlying (of topological group)      423.A
Group unimodular      60.B
Group unimodular locally compact      225.C
Group unit (of an algebraic number field)      14.D
Group unitary      60.F 151.I
Group unitary (over a field)      60.H
Group unitary (relative to an $\varepsilon$-Hermitian form)      60.O
Group unitary symplectic      60.L
Group unitary transformation      60.F
Group universal covering      91.B 423.0
Group unoriented cobordism      114.H
Group value (of a valuation)      439.B C
Group variety      13.B 16.H
Group variety algebraic      13.B
Group vector      422.E
Group velocity      446
Group Wall      114.J
Group WC (Weil — Chatelet)      118.D
Group weakly wandering under      136.F
Group web      234.B
Group weight      92.C
Group Weil      6.E 450.H
Group Weil — Chatelet      118.D
Group Weyl (of a BN pair)      13.R
Group Weyl (of a Coxeter complex)      13.R
Group Weyl (of a root system)      13.J
Group Weyl (of a symmetric Riemannian space)      413.F
Group Weyl (of an algebraic group)      13.H
Group Weyl, affine      413.F
Group Weyl.k-      13.Q
Group White      92.D
Group Whitehead (of a ring)      237.J
Group Witt (of nondegenerate quadratic forms)      348.E
Group Zassenhaus      151.H
Group(s)      190.A
Group-theoretic approach      215.C
Groupoid      190.P
Groupoid hyper-      190
Grove, Karsten      178.r
Groves, G.W.      92.r
Growth, infra-exponential      125.AA
Grunbaum, Branko      16.r 89.r
Grunbaum, F. Alberto      41.C
Grunsky inequality      438.B
Grunsky, Helmut      77.E F r
Grunwald, Geza      336.E
Grushin, Viktor Vasil’evich      323.K N
Guckenheimer, John M.      126.K N
Guderley, Karl Gottfried      205.r
Gudermann function (Gudermannian)      131.F App. Table
Gudermann, Christoph      131 .F 447 App. A Tables 16.III
Guerra, Francesco      150.F
Guest, Philip George      19.r
Gugenheim, Victor K.A.M.      65.D
Guggenheim, Edward Armand      419.r
Guide, wave      130.B
Guignard constraint qualification      292.B
Guignard, Monique M.      292.B
Guilford, Joy Paul      346.r
Guillemin, Victor W.      105.r 191.r 274.I r N G
Guiraud, Jean-Pierre      41.D
Gulliver, Robert D.      275.C 334.F
Gumbel, Emil J.      374.r
Gundlach, Karl-Bernhard      32.G
Gundy, Richard Floyd      168.B 262.B
Gunning, Robert Clifford      21.r 23.r 367.G r
Gunson, Jack      386.C
Gupta — Bleuler formalism      150.G
Gupta, Suraj Narayan      150.G
Guthrie, Francis      157.A
Guthrie, Frederick      157.A
Guttman, Louis      346.r
Gyory, Kalman      118.D
Gysin exact sequence (of a fiber space)      148.E
Gysin homomorphism      201.O
Gysin isomorphism, Thom of a fiber space      148.E
Gysin isomorphism, Thom-      114.G
Gysin, Werner      114.G 148.E 201.O H
H-closed space      425.U
h-cobordant oriented manifolds      114.I
h-cobordism group of n-dimensional homotopy spheres      114.I App. Table
h-cobordism theorem      114.F
H-function      402.B
H-series, principal      437.X
H-space      203.D
H-Theorem      402.B
Haag theorem      150.C
Haag — Araki axioms      150.E
Haag — Kastler axioms      150.E
Haag — Ruelle scattering theory      150.D
Haag, Rudolf      150.C-E 351.K 402.G
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте