Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Inverse path      170
Inverse problem (in potential scattering)      375.G
Inverse problem Jacobi      3.L
Inverse quasi- (on a Banach algebra)      36.C
Inverse relation      358.A
Inverse right (in nonlinear functional analysis)      286.G
Inverse system (of sets)      210.B
Inverse transform (of an integral transform)      220.A
Inverse trigonometric function      131.E
Inversion (of a domain in $\mathbf R^n$)      193.B
Inversion (with respect to a circle)      74.E
Inversion (with respect to a hypersphere)      76.A
Inversion formula (for a characteristic function)      341.C
Inversion formula (for a semigroup of operators)      240.I
Inversion formula (of a cosine transform)      160.C
Inversion formula (of a Fourier transform of distributions)      160.H
Inversion formula (of a Fourier transform on a locally compact Abelian group)      192.K
Inversion formula (of a Fourier transform)      160.C
Inversion formula (of a generalized Fourier transform)      220.B
Inversion formula (of a Hilbert transform)      220.E
Inversion formula (of a Laplace — Stieltjes transform)      240.D
Inversion formula (of a Mellin transform)      220.C
Inversion formula (of a Stieltjes transform)      220.D
Inversion formula (of an integral transform)      220.A
Inversion formula (on a locally compact group)      437.L
Inversion formula Fourier      160.C
Inversion formula Moebius (in combinatorics)      66.C
Inversion formula Moebius (in number theory)      295.C
Inversion Laguerre      76.B
Inversion space      258.A
Inversion space-time      258.A
Inverted filing scheme      96.F
Invertible element of a ring      368.B
Invertible element quasi-      368.B
Invertible jet      105.X
Invertible knot      235.A
Invertible matrix      269.B
Invertible sheaf      16.E
Involute (of a curve)      111.E
Involution (in a Banach algebra)      36.F
Involution (of a division ring)      348.F
Involution (of a homotopy sphere)      114.L
Involution (of an algebraic correspondence)      9.H
Involution Cartan      427.X
Involutive (cross section)      286.H
Involutive (differential ideal)      428.E
Involutive (differential system)      191.I
Involutive (distribution)      154.B 428.D
Involutive (Lie group)      191.H
Involutive automorphism (of a Lie group)      412.B
Involutive correlation      343.D
Involutive distribution (on a differentiable manifold)      428.D
Involutive subspace      428.F
Involutory (involutive) system (of differential forms)      428.F
Involutory (involutive) system (of nonlinear equations)      428.C
Involutory (involutive) system (of partial differential equations of first order)      324.D
Involutory (involutive) system (of partial differential equations)      428.F
Iochum, Bruno      351.L
Ionescu-Tulcea, Alexandra      136.B C
Iooss, Gerard      126.M
Ipsen, U.C.      116.r
Iri, Masao      66.r 186.r 281.r 299.B 301.F 303.E. r
Irie, Seiiti      62.E
Irrational function, elliptic      134.E
Irrational number space of      22.A
Irrational number(s)      294.E 355.A
Irrational real number      294.E
Irreducibility theorem, Hilbert’s (on polynomials)      337.F
Irreducible (3-manifold)      65.E
Irreducible (algebraic curve)      9.B
Irreducible (algebraic equation)      10.B
Irreducible (algebraic variety)      16.A
Irreducible (coalgebra)      203.F
Irreducible (complemented modular lattice)      243.F
Irreducible (continuous geometry)      85.A
Irreducible (continuum)      79.D
Irreducible (Coxeter complex)      13.R
Irreducible (discrete subgroup of a semisimple Lie group)      122.F
Irreducible (germ of an analytic set)      23.B
Irreducible (linear representation)      362.C
Irreducible (linear system in control theory)      86.C
Irreducible (linear system)      16.N
Irreducible (Markov chain)      260.B
Irreducible (polynomial)      337.F
Irreducible (positive matrix)      269.N 310.H
Irreducible (projective representation)      362.J
Irreducible (representation of a compact group)      69.B
Irreducible (Riemannian manifold)      364.E
Irreducible (root system)      13.L
Irreducible (scheme)      16.D
Irreducible (Siegel domain)      384.E
Irreducible (transition matrix)      126.J
Irreducible (unitary representation)      437.A
Irreducible absolutely (representation)      362.F
Irreducible at 0 (for an algebraic set)      23.B
Irreducible character (of an irreducible representation)      362.E
Irreducible character absolutely      362.E
Irreducible component (of a linear representation)      362.D
Irreducible component (of an algebraic variety)      16.A
Irreducible component (of an analytic space)      23.C
Irreducible element (of a ring)      67.H
Irreducible representation fundamental system of (of a complex semisimple Lie algebra)      248.W
Irreducible representation(s) (of a Banach algebra)      36.D
Irreducible symmetric bounded domain      412.F
Irreducible symmetric Hermitian space      412.E
Irreducible symmetric Riemannian space      412.C App. Table
Irreducible tensor of rank k      353.C
Irredundant (intersection of primary ideals)      67.F
Irregular (boundary point)      120.D
Irregular (prime number)      14.L
Irregular point (in potential theory)      338.L
Irregular point (of a Markov process)      261.D
Irregular point (of Brownian motion)      45.D
Irregular point external      338.L
Irregular singular point (of a solution)      254.B
Irregular singular point (of a system of linear ordinary differential equations)      254.B
Irregularity (of an algebraic surface)      15.E
Irregularity number of (of an algebraic variety)      16.0
Irreversible processes, statistical mechanics of      402.A
Irrotational (fluid)      205.B
Irrotational (vector field)      442.D
Irwin, Michael C.      65.D 126.G r
Irwin’s embedding theorem      65.D
Isaacs, Rufus Philip      108.A
Isbell, John Rolfe      436.r
Iseki, Kanesiroo      328
Iseki, Sho      328
Iseki, Tomotoki      230
Ishida, Masanori      16.Z
Ishihara, Shigeru      110.r 364.F 365.H
Ishihara, Toru      195.r
Isii, Keiiti      255.D 399.r
Ising model      340.B 402.G
Ising model stochastic      340.C
Ising, Ernest      340.B C
Iskovskikh, Vitalil Alekseevich      16.J
Island (in a Riemann surface)      272.J
Ismagilov, R.S.      183.r
Isobaric polynomial      32.C
Isogenous (Abelian varieties)      3.C
Isogenous (algebraic groups)      13.A
Isogeny      13.A
Isolated fixed point      126.G
Isolated ordinal number      312.B
Isolated point (in a topological space)      425.O
Isolated point (of a curve)      93.G
Isolated primary component (of an ideal)      67.F
Isolated prime divisor (of an ideal)      67.F
Isolated singular point      198.D 418.D
Isolated singularity (of an analytic function)      198.D M
Isolated vertex      186.B
Isometric immersion      365.A
Isometric mapping      111.H 273.B
Isometric operator      251.E
Isometric operator partially      251.E
Isometric Riemannian manifolds      364.A
Isometric spaces      273.B
Isometrically isomorphic (normed spaces)      37.C
Isometry ( = isometric operator)      251.E
Isometry (between Riemannian manifold)      364.A
Isomonodromic deformation      253.E
Isomorphic (algebraic systems)      409.C
Isomorphic (block bundles)      147.Q
Isomorphic (cohomology theories)      201.Q
Isomorphic (complex manifolds)      72.A
Isomorphic (fiber bundles)      147.B
Isomorphic (groups)      190.D
Isomorphic (Lie algebras)      248.A
Isomorphic (Lie groups)      249.N
Isomorphic (measure spaces)      398.D
Isomorphic (normed spaces)      37.C
Isomorphic (objects)      52.D
Isomorphic (PL-embeddings)      65.D
Isomorphic (representations)      362.C
Isomorphic (s.s.complexes)      70.E
Isomorphic (simplicial complexes)      70.C
Isomorphic (structures)      276.E
Isomorphic (topological groups)      423.A
Isomorphic (unitary representations)      437.A
Isomorphic anti- (lattices)      243.C
Isomorphic Borel      270.C
Isomorphic dually (lattices)      243.C
Isomorphic isometrically (normed spaces)      37.C
Isomorphic locally      423.O
Isomorphic mapping, Borel      270.C
Isomorphic metrically (automorphisms on a measure space)      136.E
Isomorphic order      311.E
Isomorphic relations among classical Lie algebras      App. A Table
Isomorphic similarly (ordered fields)      149.N
Isomorphic spatially (automorphisms on a measure space)      136.E
Isomorphic spectrally      136.E
Isomorphic weakly      136.E
Isomorphism $C^{\Omega}$- (of Lie groups)      249.N
Isomorphism $\Omega$-(of $\Omega$-groups)      190.E
Isomorphism (of Abelian varieties)      3.C
Isomorphism (of algebraic systems)      409.C
Isomorphism (of block bundles)      147.Q
Isomorphism (of fields)      149.B
Isomorphism (of functors)      52.J
Isomorphism (of groups)      190.D
Isomorphism (of lattices)      243.C
Isomorphism (of Lie algebras)      248.A
Isomorphism (of linear spaces)      256.B
Isomorphism (of objects)      52.D
Isomorphism (of prealgebraic varieties)      16.C
Isomorphism (of rings)      368.D
Isomorphism (of topological groups)      423.A
Isomorphism (of unfoldings)      51.D
Isomorphism admissible (of $\Omega$-groups)      190.E
Isomorphism algebra      29.A
Isomorphism analytic      21.J
Isomorphism analytic (of Lie groups)      249.N
Isomorphism anti- (of lattices)      243.C
Isomorphism anti-(of groups)      190.D
Isomorphism anti-(of ordered sets)      311.E
Isomorphism anti-(of rings)      368.D
Isomorphism birational (of Abelian varieties)      3.C
Isomorphism birational (of algebraic groups)      13.A
Isomorphism Bott      237.D
Isomorphism dual (of lattices)      243.C
Isomorphism dual (of ordered sets)      311.E
Isomorphism excision (on homology groups)      201.F L
Isomorphism functorial      52.J
Isomorphism G-      191.A
Isomorphism invariant (on a measure space)      136.E
Isomorphism k- (of algebraic groups)      13.A
Isomorphism k- (of extension fields of k)      149.D
Isomorphism lattice-      243.C
Isomorphism local (of topological groups)      423.O
Isomorphism mod p (in a class of Abelian groups)      202.N
Isomorphism operator (of $\Omega$-groups)      190.E
Isomorphism order      311.E
Isomorphism problem (for graphs)      186.J
Isomorphism problem (for integral group algebras)      362.K
Isomorphism problem (in ergodic theory)      136.E
Isomorphism ring      368.D
Isomorphism suspension (for homology)      201.E
Isomorphism theorem (in class field theory)      59.C
Isomorphism theorem (on groups)      190.D
Isomorphism theorem (on rings)      368.F
Isomorphism theorem (on topological groups)      423.J
Isomorphism theorem Ax-Kochen (on ultraproduct)      276.E
Isomorphism theorem first (on topological groups)      423.J
Isomorphism theorem Hurewicz      202.N
Isomorphism theorem Hurewicz — Steenorod (on homotopy groups of fiber spaces)      148.D
Isomorphism theorem Keisler — Shelah (in model theory)      276.E
Isomorphism theorem second (on topological groups)      423.J
Isomorphism theorem third (on topological groups)      423.J
Isomorphism Thom — Gysin      114.G
Isomorphism Thom — Gysin (of a fiber space)      148.E
Isomorphism uniform      436.E
Isoparametric (hypersurface)      365.I
Isoparametric method      304.C
Isoperimetric (curves)      228.A
Isoperimetric constant      391.D
Isoperimetric inequality      228.B
Isoperimetric problem generalized      46.A 228.A
Isoperimetric problem special      228.A
Isoperimetric problem(s)      111.E 228.A
Isospectral      391.B
Isospectral deformation      387.C
Isospin      351.J
Isospin invariance      351.J
Isothermal compressibility      419.B
Isothermal coordinates      90.C
Isothermal curvilinear coordinate system      App. A Table
Isothermal parameter      334.B
Isothermal parameter (for an analytic surface)      111.I
Isothermal process      419.B
Isotopic      65.D 202.B
Isotopic (braids)      235.F
Isotopic (embeddings)      114.D
Isotopic (latin square)      241.A
Isotopic ambient      65.D
Isotopy      65.D 202.B
Isotopy ambient      65.D
Isotopy lemma, Thorn’s first      418.G
Isotopy type (of knots)      235.A
Isotropic (with respect to a quadratic form)      348.E
Isotropic k- (algebraic group)      13.G
Isotropic point      365.D
Isotropic submanifold      365.D
Isotropic totally (subspace)      60.O 348.E
Isotropic turbulence      433.C
Isotropy group      362.B
Isotropy group linear      199.A
Isotropy group principal      431.C
Isotropy representation      431.C
Isotropy subgroup (of a topological group)      431.A
Isotropy type (of a transformation group)      431.A
Isotropy, index of total (of a quadratic form)      348.E
Isozaki, Hiroshi      375.B
Israel, Robert B.      402.r
Israel, Werner      359.r
Iss’sa, Hej      367.G
Itaya, Nobutoshi      204.F
Iterated integral (in Lebesgue integral)      221.E
Iterated integral (in Riemann integral)      216.G
Iterated kernel (for a Fredholm integral equation)      217.D
Iterated logarithm Khinchin’s law of      250.C
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте