Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Marchuk, Gurii Ivanovich      304.r
Marcinkiewicz theorem      224.E
Marcinkiewicz, Jozef      159.H 224.A E
Marden, Morris      10.r
Mardesic, Sibe      382.A
Marginal density functions      397.I
Marginal distribution      342.C 397.H
Margulis, Grcgorii A.      122.G
Marion, Jerry Baskcrvillc      271.r
Marked K3 surface      72.K
Markov branching process      44.D
Markov chains      260.A 342.A
Markov chains (non) recurrent      260.B
Markov chains embedded      260.H
Markov chains general      260.J
Markov chains imbedded      260.H
Markov field theory, Euclidean      150.F
Markov inequality (for polynomials)      336.C
Markov measure      136.D
Markov operators      136.B
Markov partition (for an automorphism)      136.G
Markov process branching      44.E
Markov process homogeneous      5.H
Markov process invariant      5.H
Markov process strong      261.B
Markov process(es)      261342.A
Markov property      261.B
Markov property strong      261.B
Markov shift      136.D
Markov statistical mechanics      340.C
Markov subshift      126.J
Markov theorem, Gauss-      403.E
Markov time      261.B 407.B
Markov, Andrei Andreevich      5.H 44.D E J D G H J B
Markov, Andrei Andreevich A.      31.B 161.B 356.r
Markovian decision process      127.E
Markovian policy      405.C
Markovian type (stochastic differential equation)      406.D
Markus, Lawrence J.      86.r 126.A H L r
Markwald, Werner      81.A r
Marotto, Frederick Robert      126.J
Marsden, Jerrold E.      126.r 183.r 271.r 286.r 316.r 364.H 420.r
Marshall, Donald E.      164.I
Marsten, Roy Earl      215.r
Martin axiom (in set theory)      33.F
Martin bound, Froissart-      386.B
Martin boundary      207.C 260.I
Martin boundary dual      260.I
Martin compactification      207.C
Martin kernel      207.C
Martin, Andre      150.D386.B r
Martin, Donald A.      22.D F H r r
Martin, Harold C      304.r
Martin, Paul C.      308.H
Martin, Robert S.      207.C D
Martin, William Ted      21.r
Martin-Lof, Per      354.r
Martineau — Harvey duality      125.Y
Martineau, Andre      125.W Y r
Martinet, Jean      110.E
Martingale      262342.A
Martingale $\{F_1\}$-Wiener      406.B
Martingale additive functional      261.E
Martingale local      262.E
Martingale part      406.B
Martingale problem      115.C 261.C 406.A
Martio, Olli Tapani      352.F
Marty, F.      272.H 435.E
Maruyama, Masaki      16.Y
Maruyama, Toru      443.A
MaruyamaGisiro      115.D 136.D E
Masani, PesiR.      395.r
Mascheroni, Lorenzo      179.B
Maschke, Heinrich      362.G
Maschler, Michael      173.D
Maskit, Bernard      122.I 234.D r
Masley, John M.      14.L
Maslov bundle      274.C
Maslov index, Keller-      274.C
Maslov, Viktor Pavlovich      30.r 274.C I
Mass      132.A 258.C 271.E
Mass (of a current)      275.G
Mass center of      271.E
Mass distribution capacitary      338.K
Mass distribution equilibrium      338.K
Mass integrals of the center of      420.A
Mass lumping      304.D
Mass matrix      304.D
Massau, Junius      19.B
Masser, David W.      134.r 430.D r
Massey theorem, Blakers-      202.M
Massey, William S.      91.r 170.I 201.r 202.M P
Master equation      402.I
Masuda, Kyuya      378.I J
Masuda. Kazuo      72.r
Masuyama, Motosaburo      STR
Matano, Hiroshi      263.C 303.G r
Matched asymptotic expansions, method of      25.B
Mathematical axiom      411.I
Mathematical expectation (of a probability distribution)      341.B
Mathematical induction      294.B
Mathematical induction axiom of      294.B
Mathematical induction definition by      294.B
Mathematical induction doulbe      294.B
Mathematical induction multiple      294.B
Mathematical linguistics      75.E
Mathematical logic      411.A
Mathematical modeling      40.G 300
Mathematical models in biology      263
Mathematical object      52.A
Mathematical programming      264.A
Mathematical programming problem      264.B
Mathematical structure      409.B
Mathematical system (for a structure)      409.B
Mathematics actuarial      214.A
Mathematics combinatorial      66.A
Mathematics discrete      66.A
Mathematics in the 17th century      265
Mathematics in the 18th century      266
Mathematics in the 19th century      267
Mather, John Norman      51.C-E 126.J 154.E r
Mathews, George Ballard      39.r
Mathieu differential equation      268.A
Mathieu differential equation modified      268.A
Mathieu functions      268
Mathieu functions modified      268.A
Mathieu functions modified, of the first kind      268.D
Mathieu functions modified, of the second kind      268.D
Mathieu functions modified, of the third kind      268.D
Mathieu functions of the second kind      268.D
Mathieu group      151.H
Mathieu method      268.C
Mathieu, Emile Leonard      151.H 268.A-D
Matiyasevich, Yuril Vladimirovich      97.* r
Matric group      226.B
Matrix (matrices)      269
Matrix (matrices) $m\times n$      269.A
Matrix (matrices) adjacement      186.G
Matrix (matrices) adjoint      269.I
Matrix (matrices) Alexander (of a knot)      235.C
Matrix (matrices) alternating      269.B
Matrix (matrices) amplification      304.F
Matrix (matrices) anti-Hermitian      269.I
Matrix (matrices) antisymmetric      269.B
Matrix (matrices) association      102.J
Matrix (matrices) asymptotic covariance      399.K
Matrix (matrices) bounded      269.K
Matrix (matrices) circuit      254.B
Matrix (matrices) column finite      269.K
Matrix (matrices) companion      301.I
Matrix (matrices) complex orthogonal      269.J
Matrix (matrices) correlation      397.J
Matrix (matrices) covariance      341.B 397.J
Matrix (matrices) density      351.B
Matrix (matrices) design      102.A 403.D
Matrix (matrices) diagonal      269.A
Matrix (matrices) Dirac      377.C
Matrix (matrices) Dirac’s $\gamma$      351.G
Matrix (matrices) error      405.G
Matrix (matrices) Fisher information      399.D
Matrix (matrices) fundamental cutset      186.G
Matrix (matrices) fundamental tieset      186.G
Matrix (matrices) group      226.B
Matrix (matrices) Hasse — Witt      9.E
Matrix (matrices) Hermitian      269.I
Matrix (matrices) identity      269.A
Matrix (matrices) incidence (of a block design)      102.B
Matrix (matrices) incidence (of a graph)      186.G
Matrix (matrices) infinite      269.K
Matrix (matrices) information      102.I
Matrix (matrices) inverse      269.B
Matrix (matrices) invertible      269.B
Matrix (matrices) iteration      302.C
Matrix (matrices) Jacobi      390.G
Matrix (matrices) Jacobian      208.B
Matrix (matrices) lower triangular      269.B
Matrix (matrices) m by n      269.A
Matrix (matrices) mass      304.D
Matrix (matrices) moment      341.B
Matrix (matrices) monodromy      254.B
Matrix (matrices) nilpotent      269.F
Matrix (matrices) noncentrality      374.C
Matrix (matrices) nonsingular      269.B
Matrix (matrices) normal      269.I
Matrix (matrices) of a bilinear form      256.H
Matrix (matrices) of quadratic form      348.A
Matrix (matrices) of sesquilinear form      256.Q
Matrix (matrices) of the sum of squares between classes      280.B
Matrix (matrices) of the sum of squares within classes      280.B
Matrix (matrices) of(m, n)-type      269.A
Matrix (matrices) orthogonal      269J
Matrix (matrices) parity check      63.C
Matrix (matrices) Paulispin      258.A351.G
Matrix (matrices) period (of a closed Riemann surface)      11.C
Matrix (matrices) period (of a complex torus)      3.H
Matrix (matrices) port-admittance      282.C
Matrix (matrices) port-impedance      282.C
Matrix (matrices) positive definite      269.I
Matrix (matrices) positive semidefinite      269.I
Matrix (matrices) principal      3.I
Matrix (matrices) projection      269.I
Matrix (matrices) proper orthogonal      269.J
Matrix (matrices) Q-      260.F
Matrix (matrices) rational function      86.D
Matrix (matrices) rectangular      269.A
Matrix (matrices) regular      269.B
Matrix (matrices) Riemann      3.I
Matrix (matrices) row finite      269.K
Matrix (matrices) S-      150.D386
Matrix (matrices) sample correlation      280.E
Matrix (matrices) scalar      269.A
Matrix (matrices) scale      374.C
Matrix (matrices) Seifert      235.C
Matrix (matrices) semisimple      269.G
Matrix (matrices) similar square      269.G
Matrix (matrices) skew h-      269.I
Matrix (matrices) skew-Hermitian      269.I
Matrix (matrices) skew-symmetric      269.B
Matrix (matrices) square      269.A
Matrix (matrices) stiffness      304.C
Matrix (matrices) stochastic      260.A
Matrix (matrices) symmetric      269.B
Matrix (matrices) symplectic      60.L
Matrix (matrices) transfer function      86.B
Matrix (matrices) transition      126.J 260.A
Matrix (matrices) transposed      269.B
Matrix (matrices) triangular      269.B
Matrix (matrices) tridiagonal      298.D
Matrix (matrices) unipotent      269.F
Matrix (matrices) unit      269.A
Matrix (matrices) unitary      269.I
Matrix (matrices) upper triangular      269.B
Matrix (matrices) variance      341.B
Matrix (matrices) variance-covariance      341.B 397.J
Matrix (matrices) weighting      86.B
Matrix (matrices) zero      269.B
Matrix algebra full      269.B
Matrix algebra total      269.B
Matrix convex of order m      212.C
Matrix element      351.B
Matrix game      173.C
Matrix group      226.B
Matrix monotone decreasing of order m      212.C
Matrix montone increasing of order m      212.C
Matrix representation      362.D
Matrix Riccati differential equation      86.E
Matrix Riccati equation      405.G
Matrix unit      269.B
Matroid      66.G
Matroid operations for      66.H
Matroid p-ary      66.H
Matroid poly-      66.F
Matsuda, Michihiko      428.G
Matsumoto, Hideya      13.R 122.F
Matsumoto, Kazuo      411.J
Matsumoto, Kikuji      62.B 124 C r
Matsumoto, Shigenori      126.M
Matsumoto, Yukio      65.D 114.K
Matsumura, Akitaka      41.r 204.F
Matsumura, Hideyuki      284.r
Matsusaka, Teruhisa      12.B 16.P W r
Matsushima, Yozo      32.r 122.F 199.r 249.r 384.r
Matsushita, Shin-ichi      338.L
Matsuyama, Noboru      310.r
Mattis, Daniel Charles      402.r
Mattuck theorem, Lutz-      118.E
Mattuck, Arthur Paul      118.E 450.P
Matuda, Tizuko      30.r 288.B r
Matumoto, Takao      65.C 114.K
Matunaga Yosisuke      230 332
Matuzaka, Kazuo      7.r 343.r
Matveev, Vladimir Borisovich      387.r
Maunder, Charles Richard Francis      201.r
Maupertuis principle      180.A
Maurer, Ludwig      249.R
Maurer-Cartan differential form of      249.R
Maurer-Cartan system of differential equations of      249.R
Maurus      372
Mautner, Friedrich Ignaz      136.G 308.G 437.EE
Mawhin, Jean      290.r
Maxfield, John E.      NTR
Maximal (hypersurface in Minkowski space)      275.H
Maximal (ideal)      368.F
Maximal (in prediction theory)      395.D
Maximal (Riemann surface)      367.F
Maximal concentration function      341.E
Maximal condition      311.C
Maximal deficiency (of an algebraic surface)      15.E
Maximal dilatation      352.B
Maximal dissipative operator      251.J
Maximal element (in an ordered set)      31l.B
Maximal entropy      136.C H
Maximal ergodic lemma      136.B
Maximal filter      87.I
Maximal function nontangential      168.B
Maximal function radial      168.B
Maximal ideal      67.C 368.F
Maximal ideal space (of a Banach algebra)      36.E
Maximal independent system (of an additive group)      2.E
Maximal inequality (= maximal ergodic lemma)      136.B
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте