|
 |
Авторизация |
|
 |
Поиск по указателям |
|
 |
|
 |
|
 |
 |
|
 |
|
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 |
|
 |
Предметный указатель |
Marchuk, Gurii Ivanovich 304.r
Marcinkiewicz theorem 224.E
Marcinkiewicz, Jozef 159.H 224.A E
Marden, Morris 10.r
Mardesic, Sibe 382.A
Marginal density functions 397.I
Marginal distribution 342.C 397.H
Margulis, Grcgorii A. 122.G
Marion, Jerry Baskcrvillc 271.r
Marked K3 surface 72.K
Markov branching process 44.D
Markov chains 260.A 342.A
Markov chains (non) recurrent 260.B
Markov chains embedded 260.H
Markov chains general 260.J
Markov chains imbedded 260.H
Markov field theory, Euclidean 150.F
Markov inequality (for polynomials) 336.C
Markov measure 136.D
Markov operators 136.B
Markov partition (for an automorphism) 136.G
Markov process branching 44.E
Markov process homogeneous 5.H
Markov process invariant 5.H
Markov process strong 261.B
Markov process(es) 261342.A
Markov property 261.B
Markov property strong 261.B
Markov shift 136.D
Markov statistical mechanics 340.C
Markov subshift 126.J
Markov theorem, Gauss- 403.E
Markov time 261.B 407.B
Markov, Andrei Andreevich 5.H 44.D E J D G H J B
Markov, Andrei Andreevich A. 31.B 161.B 356.r
Markovian decision process 127.E
Markovian policy 405.C
Markovian type (stochastic differential equation) 406.D
Markus, Lawrence J. 86.r 126.A H L r
Markwald, Werner 81.A r
Marotto, Frederick Robert 126.J
Marsden, Jerrold E. 126.r 183.r 271.r 286.r 316.r 364.H 420.r
Marshall, Donald E. 164.I
Marsten, Roy Earl 215.r
Martin axiom (in set theory) 33.F
Martin bound, Froissart- 386.B
Martin boundary 207.C 260.I
Martin boundary dual 260.I
Martin compactification 207.C
Martin kernel 207.C
Martin, Andre 150.D386.B r
Martin, Donald A. 22.D F H r r
Martin, Harold C 304.r
Martin, Paul C. 308.H
Martin, Robert S. 207.C D
Martin, William Ted 21.r
Martin-Lof, Per 354.r
Martineau — Harvey duality 125.Y
Martineau, Andre 125.W Y r
Martinet, Jean 110.E
Martingale 262342.A
Martingale -Wiener 406.B
Martingale additive functional 261.E
Martingale local 262.E
Martingale part 406.B
Martingale problem 115.C 261.C 406.A
Martio, Olli Tapani 352.F
Marty, F. 272.H 435.E
Maruyama, Masaki 16.Y
Maruyama, Toru 443.A
MaruyamaGisiro 115.D 136.D E
Masani, PesiR. 395.r
Mascheroni, Lorenzo 179.B
Maschke, Heinrich 362.G
Maschler, Michael 173.D
Maskit, Bernard 122.I 234.D r
Masley, John M. 14.L
Maslov bundle 274.C
Maslov index, Keller- 274.C
Maslov, Viktor Pavlovich 30.r 274.C I
Mass 132.A 258.C 271.E
Mass (of a current) 275.G
Mass center of 271.E
Mass distribution capacitary 338.K
Mass distribution equilibrium 338.K
Mass integrals of the center of 420.A
Mass lumping 304.D
Mass matrix 304.D
Massau, Junius 19.B
Masser, David W. 134.r 430.D r
Massey theorem, Blakers- 202.M
Massey, William S. 91.r 170.I 201.r 202.M P
Master equation 402.I
Masuda, Kyuya 378.I J
Masuda. Kazuo 72.r
Masuyama, Motosaburo STR
Matano, Hiroshi 263.C 303.G r
Matched asymptotic expansions, method of 25.B
Mathematical axiom 411.I
Mathematical expectation (of a probability distribution) 341.B
Mathematical induction 294.B
Mathematical induction axiom of 294.B
Mathematical induction definition by 294.B
Mathematical induction doulbe 294.B
Mathematical induction multiple 294.B
Mathematical linguistics 75.E
Mathematical logic 411.A
Mathematical modeling 40.G 300
Mathematical models in biology 263
Mathematical object 52.A
Mathematical programming 264.A
Mathematical programming problem 264.B
Mathematical structure 409.B
Mathematical system (for a structure) 409.B
Mathematics actuarial 214.A
Mathematics combinatorial 66.A
Mathematics discrete 66.A
Mathematics in the 17th century 265
Mathematics in the 18th century 266
Mathematics in the 19th century 267
Mather, John Norman 51.C-E 126.J 154.E r
Mathews, George Ballard 39.r
Mathieu differential equation 268.A
Mathieu differential equation modified 268.A
Mathieu functions 268
Mathieu functions modified 268.A
Mathieu functions modified, of the first kind 268.D
Mathieu functions modified, of the second kind 268.D
Mathieu functions modified, of the third kind 268.D
Mathieu functions of the second kind 268.D
Mathieu group 151.H
Mathieu method 268.C
Mathieu, Emile Leonard 151.H 268.A-D
Matiyasevich, Yuril Vladimirovich 97.* r
Matric group 226.B
Matrix (matrices) 269
Matrix (matrices) 269.A
Matrix (matrices) adjacement 186.G
Matrix (matrices) adjoint 269.I
Matrix (matrices) Alexander (of a knot) 235.C
Matrix (matrices) alternating 269.B
Matrix (matrices) amplification 304.F
Matrix (matrices) anti-Hermitian 269.I
Matrix (matrices) antisymmetric 269.B
Matrix (matrices) association 102.J
Matrix (matrices) asymptotic covariance 399.K
Matrix (matrices) bounded 269.K
Matrix (matrices) circuit 254.B
Matrix (matrices) column finite 269.K
Matrix (matrices) companion 301.I
| Matrix (matrices) complex orthogonal 269.J
Matrix (matrices) correlation 397.J
Matrix (matrices) covariance 341.B 397.J
Matrix (matrices) density 351.B
Matrix (matrices) design 102.A 403.D
Matrix (matrices) diagonal 269.A
Matrix (matrices) Dirac 377.C
Matrix (matrices) Dirac’s 351.G
Matrix (matrices) error 405.G
Matrix (matrices) Fisher information 399.D
Matrix (matrices) fundamental cutset 186.G
Matrix (matrices) fundamental tieset 186.G
Matrix (matrices) group 226.B
Matrix (matrices) Hasse — Witt 9.E
Matrix (matrices) Hermitian 269.I
Matrix (matrices) identity 269.A
Matrix (matrices) incidence (of a block design) 102.B
Matrix (matrices) incidence (of a graph) 186.G
Matrix (matrices) infinite 269.K
Matrix (matrices) information 102.I
Matrix (matrices) inverse 269.B
Matrix (matrices) invertible 269.B
Matrix (matrices) iteration 302.C
Matrix (matrices) Jacobi 390.G
Matrix (matrices) Jacobian 208.B
Matrix (matrices) lower triangular 269.B
Matrix (matrices) m by n 269.A
Matrix (matrices) mass 304.D
Matrix (matrices) moment 341.B
Matrix (matrices) monodromy 254.B
Matrix (matrices) nilpotent 269.F
Matrix (matrices) noncentrality 374.C
Matrix (matrices) nonsingular 269.B
Matrix (matrices) normal 269.I
Matrix (matrices) of a bilinear form 256.H
Matrix (matrices) of quadratic form 348.A
Matrix (matrices) of sesquilinear form 256.Q
Matrix (matrices) of the sum of squares between classes 280.B
Matrix (matrices) of the sum of squares within classes 280.B
Matrix (matrices) of(m, n)-type 269.A
Matrix (matrices) orthogonal 269J
Matrix (matrices) parity check 63.C
Matrix (matrices) Paulispin 258.A351.G
Matrix (matrices) period (of a closed Riemann surface) 11.C
Matrix (matrices) period (of a complex torus) 3.H
Matrix (matrices) port-admittance 282.C
Matrix (matrices) port-impedance 282.C
Matrix (matrices) positive definite 269.I
Matrix (matrices) positive semidefinite 269.I
Matrix (matrices) principal 3.I
Matrix (matrices) projection 269.I
Matrix (matrices) proper orthogonal 269.J
Matrix (matrices) Q- 260.F
Matrix (matrices) rational function 86.D
Matrix (matrices) rectangular 269.A
Matrix (matrices) regular 269.B
Matrix (matrices) Riemann 3.I
Matrix (matrices) row finite 269.K
Matrix (matrices) S- 150.D386
Matrix (matrices) sample correlation 280.E
Matrix (matrices) scalar 269.A
Matrix (matrices) scale 374.C
Matrix (matrices) Seifert 235.C
Matrix (matrices) semisimple 269.G
Matrix (matrices) similar square 269.G
Matrix (matrices) skew h- 269.I
Matrix (matrices) skew-Hermitian 269.I
Matrix (matrices) skew-symmetric 269.B
Matrix (matrices) square 269.A
Matrix (matrices) stiffness 304.C
Matrix (matrices) stochastic 260.A
Matrix (matrices) symmetric 269.B
Matrix (matrices) symplectic 60.L
Matrix (matrices) transfer function 86.B
Matrix (matrices) transition 126.J 260.A
Matrix (matrices) transposed 269.B
Matrix (matrices) triangular 269.B
Matrix (matrices) tridiagonal 298.D
Matrix (matrices) unipotent 269.F
Matrix (matrices) unit 269.A
Matrix (matrices) unitary 269.I
Matrix (matrices) upper triangular 269.B
Matrix (matrices) variance 341.B
Matrix (matrices) variance-covariance 341.B 397.J
Matrix (matrices) weighting 86.B
Matrix (matrices) zero 269.B
Matrix algebra full 269.B
Matrix algebra total 269.B
Matrix convex of order m 212.C
Matrix element 351.B
Matrix game 173.C
Matrix group 226.B
Matrix monotone decreasing of order m 212.C
Matrix montone increasing of order m 212.C
Matrix representation 362.D
Matrix Riccati differential equation 86.E
Matrix Riccati equation 405.G
Matrix unit 269.B
Matroid 66.G
Matroid operations for 66.H
Matroid p-ary 66.H
Matroid poly- 66.F
Matsuda, Michihiko 428.G
Matsumoto, Hideya 13.R 122.F
Matsumoto, Kazuo 411.J
Matsumoto, Kikuji 62.B 124 C r
Matsumoto, Shigenori 126.M
Matsumoto, Yukio 65.D 114.K
Matsumura, Akitaka 41.r 204.F
Matsumura, Hideyuki 284.r
Matsusaka, Teruhisa 12.B 16.P W r
Matsushima, Yozo 32.r 122.F 199.r 249.r 384.r
Matsushita, Shin-ichi 338.L
Matsuyama, Noboru 310.r
Mattis, Daniel Charles 402.r
Mattuck theorem, Lutz- 118.E
Mattuck, Arthur Paul 118.E 450.P
Matuda, Tizuko 30.r 288.B r
Matumoto, Takao 65.C 114.K
Matunaga Yosisuke 230 332
Matuzaka, Kazuo 7.r 343.r
Matveev, Vladimir Borisovich 387.r
Maunder, Charles Richard Francis 201.r
Maupertuis principle 180.A
Maurer, Ludwig 249.R
Maurer-Cartan differential form of 249.R
Maurer-Cartan system of differential equations of 249.R
Maurus 372
Mautner, Friedrich Ignaz 136.G 308.G 437.EE
Mawhin, Jean 290.r
Maxfield, John E. NTR
Maximal (hypersurface in Minkowski space) 275.H
Maximal (ideal) 368.F
Maximal (in prediction theory) 395.D
Maximal (Riemann surface) 367.F
Maximal concentration function 341.E
Maximal condition 311.C
Maximal deficiency (of an algebraic surface) 15.E
Maximal dilatation 352.B
Maximal dissipative operator 251.J
Maximal element (in an ordered set) 31l.B
Maximal entropy 136.C H
Maximal ergodic lemma 136.B
Maximal filter 87.I
Maximal function nontangential 168.B
Maximal function radial 168.B
Maximal ideal 67.C 368.F
Maximal ideal space (of a Banach algebra) 36.E
Maximal independent system (of an additive group) 2.E
Maximal inequality (= maximal ergodic lemma) 136.B
|
|
 |
Реклама |
 |
|
|