Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Orthogonalization Schmidt      317.A
Orthomodular      351.L
Orthonomic system, passive (of partial differential equations)      428.B
Orthonormal basis      197.C
Orthonormal moving frame      417.D
Orthonormal set (of a Hilbert space)      197.C
Orthonormal set (of functions)      317.A
Orthonormal set complete (of a Hilbert space)      197.C
Orthonormal system complete      217.G
Orthonormal system complete (of fundamental functions)      217.G
Orthonormalization      139.G
Orthorhombic system      92.E
Orzech, Morris      29.r
Oscillate (for a sequence)      87.D
Oscillating (series)      379.A
Oscillating motion      420.D
Oscillation (of a function)      216.A
Oscillation bounded mean      168.B
Oscillation damped      318.B
Oscillation equation of      App. A Table
Oscillation forced      318.B
Oscillation harmonic      318.B
Oscillation nonlinear      290.A
Oscillation nonstationary      290.F
Oscillation relaxation      318.C
Oscillation(s)      318
Oscillator process      351.F
Oscillatory      314.F
Osculating circle      111.F
Osculating elements      309.D
Osculating plane      111.F
Osculating process      77.B
Oseen approximation      205.C
Oseen, William      205.C
Oseledets, Valerii Iustinovich      136.B
Osgood theorem, Hartogs-      21.H
Osgood, William Fogg      3.r 11.r 21.H r
Oshima, Toshio      274.r 437.CC r
Osikawa, Motosige      136.F
Osima, Masaru      109.r 275.A-E r r
Osterwalder — Schrader axioms      150.F
Osterwalder, Konrad      150.F
Ostrogradskii, Mikhail Vasirevich      94.F
Ostrogradskil formula      94.F
Ostrowski, Alexander      14.F 58.F 88.A r 106.r 121.C 205.r 216.r 272.F 301.r 339.E 388.B 439.L
Oswatitsch, Klaus      207.C
Otsuki, Nobukazu      136.r
Otsuki, Tominosuke      275.A F
Ouchi, Sunao      378.F
Out-state      150.D 386.A
Outdegree      186.B
Outer area      216.F 270.G
Outer automorphisms group of (of a group)      190.D
Outer automorphisms group of (of a Lie algebra)      248.H
Outer capacity, Newtonian      48.H
Outer function      43.F
Outer harmonic measure      169.B
Outer measure      270.E G
Outer measure Caratheodory      270.E
Outer measure Lebesgue      270.G
Outer solution      25.B
Outer variable      25.B
Outer volume      270.G
Outgoing subspace      375.H
Outgoing wave operator      375.B
Outlier test      397.Q
Oval      89.C 111.E
Oval Cassini      93.H
Oval mean (of two ovals)      89.D
Oval width of the      111.E
Ovaloid      89.C 111.I
Overall approximation formula      303.C
Overconvergence      339.E
Overcrossing point      235.A
Overdetermined system (of differential operators)      112.I
Overdetermined system (of partial differential equations)      320.F
Overdetermined system maximally ( = holonomic)      274.H
Overfield      149.B
Overidentified      128.C
Overrelaxation successive (SOR)      302.C
Ovsyannikov, Lev Vasil’evich      286.Z
Owen, Donald B.      STR
Oxtoby, John Corning      136.H
Ozawa, Mitsuru      17.C 367.E 438.C
Ozeki, Hideki      365.I r
O’Meara, Onorato Timothy      348.r
O’Nan, Michael E.      151.H I
O’Neil, Richard      224. E
O’Neill, Barrett      111.r 178.r 365.B G
O’Neill, Bernard V., Jr.      164.F
P ermeable membrane      419.A
p-adic integer ring of      439.F
p-adic integer(s)      439.F
p-adic L-function      450.J
p-adic number      439.F
p-adic number field      257.A 439.F
p-adic regulator      450.J
p-adic valuation      439.F
p-ary matroid      66.H
p-atom      168.B
P-convex (for a differential operator)      112.C
P-convex (for a differential operator), strongly      112.C
p-covector      256.O
p-dimensional noncentral Wishart distribution      374.C
p-extension (of a field)      59.F
p-factor (of an element of a group)      362.I
p-fold exterior power (of a linear space)      256.O
p-fold exterior power (of a vector bundle)      147.F
p-form tensorial      417.C
p-form vectorial      417.C
P-function, Riemann      253.B App. Tables
p-group      151.B
p-group Abelian      2.A
p-group complete (Abelian)      2.D
p-group divisible (Abelian)      2.D
p-parabolic type      327.H
P-projective resolution      200.Q
p-rank (of a torsion-free additive group)      2.E
p-regular (element of a finite group)      362.I
p-space      425.Y
p-Sylow subgroup      151.B
p-torsion group of an exceptional group      App. A Table
p-valent (function)      438.E
p-valent (function)absolutely      438.E
p-valent (function)circumferentially mean      438.E
p-valent (function)locally      438.E
p-valent (function)locally absolute      438.E
p-valent (function)mean      438.E
p-valent (function)quasi-      438.E
p-vector      256.O
p-vector bundle of      147.F
P-wave      351.E
Paatero, Veikko      198.r
Pacioli, Luca      360
Pade approximation      142.E
Pade table      142.E
Pade, Henri Eugene      142.E
Page, Annie      123.D
Paige, Christopher Conway      241.C
Painleve equation      288.C
Painleve theorem      198.G
Painleve transcendental function      288.C
Painleve, Paul      198.G 288.A-D r
pair      381.B
Pair (in axiomatic set theory)      33.B
Pair ball      235.G
Pair BN-      13.R
Pair contact (in circle geometry)      76.C
Pair group (of topological Abelian groups)      422.I
Pair order      381.B
Pair ordered (in axiomatic set theory)      33.B
Pair orthogonal group      422.I
Pair Poincare, of formal dimension n      114.J
Pair simplicial      201.L
Pair sphere      65.D 235.G
Pair test      346.D
Pair topological      201.L
Pair unordered      381.B
Pair unordered (in axiomatic set theory)      33.B
Paired comparison      346.C
Pairing (of linear spaces)      424.G
Pairing axiom of      381.G
Pairwise sufficient (statistic)      396.F
Pal, J.      89.C
Palais — Smale condition (C)      279.E 286.Q
Palais, Richard Sheldon      80.r 105.Z r r E r
Palamodov, Viktor Pavlovich      112.R
Paley theorem      317.B
Paley theory, Littlewood-      168.B
Paley — Wiener theorem      125.O BB
Paley, Raymond Edward Alan Christopher      45.r 58.r 125.O BB G r r
Palis, Jacob Jr.      126.C J M r
Pan, Viktor Yakovlevich      71.D
Panofsky, Wolfgang Kurt German      130.r
Pantograph      19.E
Papakyriakopoulos, Christos Dimitriou      65.E 235.A
Papanicolaou, George C.      11.5.D
Paper binomial probability      19.B
Paper functonal      19.D
Paper logarithmic      19.F
Paper probability      19.F
Paper semilogarithmic      19.F
Paper stochastic      19.B
Papert, Seymour      385.r
Pappus      78.K 187 343.D
Pappus theorem (in projective geometry)      343.C
Pappus theorem (on conic sections)      78.K
Parabola family of confocal      78.H
Parabola(s)      78.A
Parabolic (differential operator)      112.A
Parabolic (Riemann surface)      367.D E
Parabolic (simply connected domain)      77.B
Parabolic (visibility manifold)      178.F
Parabolic coordinates      90.C App. Table
Parabolic cusp (of a Fuchsian group)      122.C
Parabolic cylinder      350.B
Parabolic cylinder function      167.C
Parabolic cylindrical coordinates      167.C App. Table
Parabolic cylindrical equation      App. A Table
Parabolic cylindrical surface      350.B
Parabolic geometry      285.A
Parabolic motion      420.D
Parabolic point (on a surface)      110.B 111.H
Parabolic quadric hypersurface      350.I
Parabolic subalgebra (of a semisimple Lie algebra)      248.O
Parabolic subgroup (of a Lie group)      249.J
Parabolic subgroup (of an algebraic group)      13.G
Parabolic subgroup (of the BN-pair)      13.R
Parabolic subgroup cuspidal      437.X
Parabolic subgroup minimal k-      13.Q
Parabolic subgroup standard k-      13.Q
Parabolic transformation      74.F
Parabolic type (equation of evolution)      378.I
Parabolic type partial differential equation of      327
Parabolic-elliptic motion      420.D
Paraboloid elliptic      350.B
Paraboloid elliptic, of revolution      350.B
Paraboloid hyperbolic      350.B
Paracompact $C^r$-manifold      105.D
Paracompact (space)      425.S
Paracompact (space)countably      425.Y
Paracompact (space)strongly      425.S
Paradox Burali — Forti      319.B
Paradox d’ Alembert      205.C
Paradox geocentric      392
Paradox Richard      319.B
Paradox Russel      319.B
Paradox Skolem      156.E
Paradox Zeno      319.C
Paradox(es)      319
Parallax annual      392
Parallel (lines in hyperbolic geometry)      285.B
Parallel (tensor field)      364.B
Parallel coordinates (in an affine space)      7.C
Parallel displacement (in a connection)      80.C
Parallel displacement (in an affine connection)      80.H
Parallel displacement (in the Riemannian connection)      364.B
Parallel in the narrow sense (in an affine space)      7.B
Parallel in the sense of Levi-Civita      111.H
Parallel in the wider sense (in an affine geometry)      7.B
Parallel projection (in an affine space)      7.C
Parallel translation      80.C 364.B
Parallel(s) (affine subspaces)      7.B
Parallelepiped, rectangular      14.O
Parallelism, absolute      191.B
Parallelizable (flow)      126.E
Parallelizable (manifold)      114.I
Parallelizable almost      114.I
Parallelizable s-      114.I
Parallelizable stably      114.I
Parallelogram, period      134.E
Parallelotope      425.T
Parallelotope (in an affine space)      7.D
Parallelotope, open (in an affine space)      7.D
Parallels (lines)      139.A 155.B
Parallels axioms of      139.A
Parameter (in a population distribution)      401.F
Parameter (of a probability distribution)      396.B
Parameter (of an elliptic integral)      134.A
Parameter acceleration      302.C
Parameter canonical (of an arc)      111.D
Parameter design for estimating      102.M
Parameter distinct system of      284.D
Parameter estimable      403.E
Parameter isothermal      334.B
Parameter isothermal (for an analytic surface)      111.I 334.B
Parameter Lagrange’ s method of variation of      252.D
Parameter linear      102.A
Parameter linearly estimable      403.E
Parameter local (Fuchsian groups)      32.B
Parameter local (of a nonsingular algebraic curve)      9.C
Parameter local (of a Riemann surface)      367.A
Parameter local canonical (for power series)      339.A
Parameter local uniformizing (of a Riemann surface)      367.A
Parameter location      396.I 400.E
Parameter of regularity (of a Lebesgue measurable set)      380.D
Parameter one- (group of transformations)      105.N
Parameter one- (subgroup of a Lie group)      249.Q
Parameter one-, semigroup of class $(C^0)$      378.B
Parameter regular system of      284.D
Parameter scale      396.I 400.E
Parameter secondary      110.A
Parameter selection      396.F
Parameter space (of a family of compact complex manifolds)      72.G
Parameter space (of a family of probability measures)      398.A
Parameter space (of a probability distribution)      396.B
Parameter system of      284.D
Parameter time (of a stochastic process)      407.A
Parameter transformation      396.I
Parameter transformation of      111.D
Parameter true value of      398.A
Parameter(s)      165.C
Parametric function      102.A 399.A
Parametric programming      264.C
Parametric representation      165.C
Parametric representation (of a subspace of an affine space)      7.C
Parametric representation (of Feynman integrals)      146.B
Parametrically sustained vibration      318.B
Parametrix      189.C
Parametrix left      345.A
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте