|
 |
Авторизация |
|
 |
Поиск по указателям |
|
 |
|
 |
|
 |
 |
|
 |
|
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 |
|
 |
Предметный указатель |
Orthogonalization Schmidt 317.A
Orthomodular 351.L
Orthonomic system, passive (of partial differential equations) 428.B
Orthonormal basis 197.C
Orthonormal moving frame 417.D
Orthonormal set (of a Hilbert space) 197.C
Orthonormal set (of functions) 317.A
Orthonormal set complete (of a Hilbert space) 197.C
Orthonormal system complete 217.G
Orthonormal system complete (of fundamental functions) 217.G
Orthonormalization 139.G
Orthorhombic system 92.E
Orzech, Morris 29.r
Oscillate (for a sequence) 87.D
Oscillating (series) 379.A
Oscillating motion 420.D
Oscillation (of a function) 216.A
Oscillation bounded mean 168.B
Oscillation damped 318.B
Oscillation equation of App. A Table
Oscillation forced 318.B
Oscillation harmonic 318.B
Oscillation nonlinear 290.A
Oscillation nonstationary 290.F
Oscillation relaxation 318.C
Oscillation(s) 318
Oscillator process 351.F
Oscillatory 314.F
Osculating circle 111.F
Osculating elements 309.D
Osculating plane 111.F
Osculating process 77.B
Oseen approximation 205.C
Oseen, William 205.C
Oseledets, Valerii Iustinovich 136.B
Osgood theorem, Hartogs- 21.H
Osgood, William Fogg 3.r 11.r 21.H r
Oshima, Toshio 274.r 437.CC r
Osikawa, Motosige 136.F
Osima, Masaru 109.r 275.A-E r r
Osterwalder — Schrader axioms 150.F
Osterwalder, Konrad 150.F
Ostrogradskii, Mikhail Vasirevich 94.F
Ostrogradskil formula 94.F
Ostrowski, Alexander 14.F 58.F 88.A r 106.r 121.C 205.r 216.r 272.F 301.r 339.E 388.B 439.L
Oswatitsch, Klaus 207.C
Otsuki, Nobukazu 136.r
Otsuki, Tominosuke 275.A F
Ouchi, Sunao 378.F
Out-state 150.D 386.A
Outdegree 186.B
Outer area 216.F 270.G
Outer automorphisms group of (of a group) 190.D
Outer automorphisms group of (of a Lie algebra) 248.H
Outer capacity, Newtonian 48.H
Outer function 43.F
Outer harmonic measure 169.B
Outer measure 270.E G
Outer measure Caratheodory 270.E
Outer measure Lebesgue 270.G
Outer solution 25.B
Outer variable 25.B
Outer volume 270.G
Outgoing subspace 375.H
Outgoing wave operator 375.B
Outlier test 397.Q
Oval 89.C 111.E
Oval Cassini 93.H
Oval mean (of two ovals) 89.D
Oval width of the 111.E
Ovaloid 89.C 111.I
Overall approximation formula 303.C
Overconvergence 339.E
Overcrossing point 235.A
Overdetermined system (of differential operators) 112.I
Overdetermined system (of partial differential equations) 320.F
Overdetermined system maximally ( = holonomic) 274.H
Overfield 149.B
Overidentified 128.C
Overrelaxation successive (SOR) 302.C
Ovsyannikov, Lev Vasil’evich 286.Z
Owen, Donald B. STR
Oxtoby, John Corning 136.H
Ozawa, Mitsuru 17.C 367.E 438.C
Ozeki, Hideki 365.I r
O’Meara, Onorato Timothy 348.r
O’Nan, Michael E. 151.H I
O’Neil, Richard 224. E
O’Neill, Barrett 111.r 178.r 365.B G
O’Neill, Bernard V., Jr. 164.F
P ermeable membrane 419.A
p-adic integer ring of 439.F
p-adic integer(s) 439.F
p-adic L-function 450.J
p-adic number 439.F
p-adic number field 257.A 439.F
p-adic regulator 450.J
p-adic valuation 439.F
p-ary matroid 66.H
p-atom 168.B
P-convex (for a differential operator) 112.C
P-convex (for a differential operator), strongly 112.C
p-covector 256.O
p-dimensional noncentral Wishart distribution 374.C
p-extension (of a field) 59.F
p-factor (of an element of a group) 362.I
p-fold exterior power (of a linear space) 256.O
p-fold exterior power (of a vector bundle) 147.F
p-form tensorial 417.C
p-form vectorial 417.C
P-function, Riemann 253.B App. Tables
p-group 151.B
p-group Abelian 2.A
p-group complete (Abelian) 2.D
p-group divisible (Abelian) 2.D
p-parabolic type 327.H
P-projective resolution 200.Q
p-rank (of a torsion-free additive group) 2.E
p-regular (element of a finite group) 362.I
p-space 425.Y
p-Sylow subgroup 151.B
p-torsion group of an exceptional group App. A Table
p-valent (function) 438.E
p-valent (function)absolutely 438.E
p-valent (function)circumferentially mean 438.E
p-valent (function)locally 438.E
p-valent (function)locally absolute 438.E
p-valent (function)mean 438.E
p-valent (function)quasi- 438.E
p-vector 256.O
p-vector bundle of 147.F
P-wave 351.E
Paatero, Veikko 198.r
Pacioli, Luca 360
Pade approximation 142.E
Pade table 142.E
Pade, Henri Eugene 142.E
Page, Annie 123.D
Paige, Christopher Conway 241.C
Painleve equation 288.C
Painleve theorem 198.G
Painleve transcendental function 288.C
Painleve, Paul 198.G 288.A-D r
pair 381.B
Pair (in axiomatic set theory) 33.B
Pair ball 235.G
Pair BN- 13.R
Pair contact (in circle geometry) 76.C
Pair group (of topological Abelian groups) 422.I
Pair order 381.B
| Pair ordered (in axiomatic set theory) 33.B
Pair orthogonal group 422.I
Pair Poincare, of formal dimension n 114.J
Pair simplicial 201.L
Pair sphere 65.D 235.G
Pair test 346.D
Pair topological 201.L
Pair unordered 381.B
Pair unordered (in axiomatic set theory) 33.B
Paired comparison 346.C
Pairing (of linear spaces) 424.G
Pairing axiom of 381.G
Pairwise sufficient (statistic) 396.F
Pal, J. 89.C
Palais — Smale condition (C) 279.E 286.Q
Palais, Richard Sheldon 80.r 105.Z r r E r
Palamodov, Viktor Pavlovich 112.R
Paley theorem 317.B
Paley theory, Littlewood- 168.B
Paley — Wiener theorem 125.O BB
Paley, Raymond Edward Alan Christopher 45.r 58.r 125.O BB G r r
Palis, Jacob Jr. 126.C J M r
Pan, Viktor Yakovlevich 71.D
Panofsky, Wolfgang Kurt German 130.r
Pantograph 19.E
Papakyriakopoulos, Christos Dimitriou 65.E 235.A
Papanicolaou, George C. 11.5.D
Paper binomial probability 19.B
Paper functonal 19.D
Paper logarithmic 19.F
Paper probability 19.F
Paper semilogarithmic 19.F
Paper stochastic 19.B
Papert, Seymour 385.r
Pappus 78.K 187 343.D
Pappus theorem (in projective geometry) 343.C
Pappus theorem (on conic sections) 78.K
Parabola family of confocal 78.H
Parabola(s) 78.A
Parabolic (differential operator) 112.A
Parabolic (Riemann surface) 367.D E
Parabolic (simply connected domain) 77.B
Parabolic (visibility manifold) 178.F
Parabolic coordinates 90.C App. Table
Parabolic cusp (of a Fuchsian group) 122.C
Parabolic cylinder 350.B
Parabolic cylinder function 167.C
Parabolic cylindrical coordinates 167.C App. Table
Parabolic cylindrical equation App. A Table
Parabolic cylindrical surface 350.B
Parabolic geometry 285.A
Parabolic motion 420.D
Parabolic point (on a surface) 110.B 111.H
Parabolic quadric hypersurface 350.I
Parabolic subalgebra (of a semisimple Lie algebra) 248.O
Parabolic subgroup (of a Lie group) 249.J
Parabolic subgroup (of an algebraic group) 13.G
Parabolic subgroup (of the BN-pair) 13.R
Parabolic subgroup cuspidal 437.X
Parabolic subgroup minimal k- 13.Q
Parabolic subgroup standard k- 13.Q
Parabolic transformation 74.F
Parabolic type (equation of evolution) 378.I
Parabolic type partial differential equation of 327
Parabolic-elliptic motion 420.D
Paraboloid elliptic 350.B
Paraboloid elliptic, of revolution 350.B
Paraboloid hyperbolic 350.B
Paracompact -manifold 105.D
Paracompact (space) 425.S
Paracompact (space)countably 425.Y
Paracompact (space)strongly 425.S
Paradox Burali — Forti 319.B
Paradox d’ Alembert 205.C
Paradox geocentric 392
Paradox Richard 319.B
Paradox Russel 319.B
Paradox Skolem 156.E
Paradox Zeno 319.C
Paradox(es) 319
Parallax annual 392
Parallel (lines in hyperbolic geometry) 285.B
Parallel (tensor field) 364.B
Parallel coordinates (in an affine space) 7.C
Parallel displacement (in a connection) 80.C
Parallel displacement (in an affine connection) 80.H
Parallel displacement (in the Riemannian connection) 364.B
Parallel in the narrow sense (in an affine space) 7.B
Parallel in the sense of Levi-Civita 111.H
Parallel in the wider sense (in an affine geometry) 7.B
Parallel projection (in an affine space) 7.C
Parallel translation 80.C 364.B
Parallel(s) (affine subspaces) 7.B
Parallelepiped, rectangular 14.O
Parallelism, absolute 191.B
Parallelizable (flow) 126.E
Parallelizable (manifold) 114.I
Parallelizable almost 114.I
Parallelizable s- 114.I
Parallelizable stably 114.I
Parallelogram, period 134.E
Parallelotope 425.T
Parallelotope (in an affine space) 7.D
Parallelotope, open (in an affine space) 7.D
Parallels (lines) 139.A 155.B
Parallels axioms of 139.A
Parameter (in a population distribution) 401.F
Parameter (of a probability distribution) 396.B
Parameter (of an elliptic integral) 134.A
Parameter acceleration 302.C
Parameter canonical (of an arc) 111.D
Parameter design for estimating 102.M
Parameter distinct system of 284.D
Parameter estimable 403.E
Parameter isothermal 334.B
Parameter isothermal (for an analytic surface) 111.I 334.B
Parameter Lagrange’ s method of variation of 252.D
Parameter linear 102.A
Parameter linearly estimable 403.E
Parameter local (Fuchsian groups) 32.B
Parameter local (of a nonsingular algebraic curve) 9.C
Parameter local (of a Riemann surface) 367.A
Parameter local canonical (for power series) 339.A
Parameter local uniformizing (of a Riemann surface) 367.A
Parameter location 396.I 400.E
Parameter of regularity (of a Lebesgue measurable set) 380.D
Parameter one- (group of transformations) 105.N
Parameter one- (subgroup of a Lie group) 249.Q
Parameter one-, semigroup of class 378.B
Parameter regular system of 284.D
Parameter scale 396.I 400.E
Parameter secondary 110.A
Parameter selection 396.F
Parameter space (of a family of compact complex manifolds) 72.G
Parameter space (of a family of probability measures) 398.A
Parameter space (of a probability distribution) 396.B
Parameter system of 284.D
Parameter time (of a stochastic process) 407.A
Parameter transformation 396.I
Parameter transformation of 111.D
Parameter true value of 398.A
Parameter(s) 165.C
Parametric function 102.A 399.A
Parametric programming 264.C
Parametric representation 165.C
Parametric representation (of a subspace of an affine space) 7.C
Parametric representation (of Feynman integrals) 146.B
Parametrically sustained vibration 318.B
Parametrix 189.C
Parametrix left 345.A
|
|
 |
Реклама |
 |
|
|