Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Projective curvature tensor      App. A Table
Projective deformation (between surfaces)      110.B
Projective determinacy      22.H
Projective differential geometry      110.B
Projective dimension (of a module)      200.K
Projective frame (in projective geometry)      343.C
Projective general linear group      60.B
Projective general linear group of degree n over K      60.B
Projective geometry      343
Projective geometry finite-dimensional      343.B
Projective geometry fundamental theorem of      343.D
Projective geometry general      343.B
Projective geometry of paths      109
Projective limit (in a category)      210.D
Projective limit (of a projective system of sets)      210.B
Projective limit (of a projective system of topological groups)      423.K
Projective limit group      210.C
Projective limit space      210.C
Projective line      343.B
Projective line element      110.B
Projective mapping (in projective geometry)      343.B
Projective module, (R, S)-      200.K
Projective morphism      16.E
Projective morphism quasi-      16.E
Projective plane      343.B
Projective plane Cayley      54
Projective plane finite      241.B
Projective representation (of a group)      362.J
Projective representation irreducible      362.J
Projective representation similar      362.J
Projective resolution $\mathfrak B$-      200.Q
Projective resolution (in an Abelian category)      200.I
Projective resolution left (ofanzl-module)      200.C
Projective scheme      16.E
Projective scheme quasi-      16.E
Projective set of class n      22.D
Projective space      343.B
Projective space complex      343.D
Projective space infinite-dimensional complex      56.C
Projective space infinite-dimensional real      56.B
Projective space left      343.F
Projective space over A      147.E
Projective space real      343.D
Projective space right      343.F
Projective special linear group      60.B
Projective special linear group (over a noncommutative field)      60.0
Projective special unitary group over K      60.H
Projective symplectic group over K      60.L
Projective system (in a category)      210.D
Projective system (of groups)      210.C
Projective system (of sets)      210.B
Projective system (of toplogical spaces)      210.C
Projective system (of topological groups)      423.K
Projective topology      424.R
Projective transformation      343.D 364.F
Projective transformation group      343.D
Projective transformation group of      343.D
Projective transformation regular      343.D
Projective transformation singular      343.D
Projective transformation singular, of the kth species      343.D
Projective unitary group      60.F
Projective variety      16.A
Projectively flat space      App. A Table
Projectively related (fundamental figures)      343.B
Prokhorov, Yurii Vasil’evich      115.D 250.E r341.F r374.r
Prolate      App. A Table
Proliferation (of errors)      138.D
Prolongable (Riemann surface)      367.F
Prolongation (along a curve in a covering surface)      367.B
Prolongation (of a Riemann surface)      367.F
Prolongation (of a solution of an ordinary differential equation)      316.C
Prolongation (of a system of partial differential equations)      428.B F
Prolongation (of a valuation)      439.B
Prolongation analytic      198.G
Prolongation fcth (of G)      191.D
Prolongation first (of P)      191.E
Prolongation kth (of a Lie subalgebra)      191.D
Prolongation kth (of P)      191.E
Prolongational limit set first negative      126.D
Prolongational limit set first positive      126.D
Proof theory      156.D
Proof, consistency      156.D
Proof, consistency for pure number theory      156.E
Propagation equation of sound      325.A
Propagation of chaos      340.F
Propagation of errors      138.C
Propagation of singularities      325.M
Propagation wave      446
Proper (continuous mapping)      425.W
Proper (equivalence relation in an analytic space)      23.E
Proper (leaf)      154.D
Proper (Lorentz group)      258.A
Proper (morphism of scheme)      16.D
Proper (PL embedding)      65.D
Proper affine transformation      7.E
Proper class (in set theory)      381.G
Proper complex Lorentz group      258.A
Proper component (of an intersection of subvarieties)      16.G
Proper convex function      88.D
Proper factor (of an element of a ring)      67.H
Proper flag manifold      199.B
Proper function (of a boundary value problem)      315.B
Proper hypersphere (in hyperbolic geometry)      285.C
Proper Lorentz group      60.J
Proper mapping fundamental theorem of      16.X
Proper mapping(s)      425.W
Proper meromorphic mapping (between analytic spaces)      23.D
Proper modification (of an analytic space)      23.D
Proper motion in Euclidean geometry      139.B
Proper motion of a star      392
Proper orthogonal group      60.I258.A
Proper orthogonal matrix      269.J
Proper product (of two normal $\mathfrak g$-lattices)      27.A
Proper quadric surface      350.B
Proper rotation group      258.A
Proper subset      381.A
Proper time      258.A
Proper transform (of a subvariety)      16.I
Proper value (of a boundary value problem)      315.B
Proper value (of a linear mapping)      269.L
Proper value (of a linear operator)      390.A
Proper value (of a matrix)      269.F
Proper variation      279.F
Proper vector (belonging to an eigenvalue)      269.F
Proper vector (of a linear operator)      390.A
Proper vector (of a linear transformation)      269.L
Properly (n — l)-dimensional quadric hypersurface      350.G
Properly convex (subset of a sphere)      274.E
Properly discontinuous transformation group      122.A
Properly divergent      379.A
Properly equivalent (binary quadratic forms)      348.M
Properly infinite      308.E
Properly intersect (on a variety)      16.G
Properly posed (initial value problem)      321.E
Properly posed (problems for partial differential equations)      322.A
Property (properties)      411.G
Property (properties) approximation      37.L
Property (properties) asymptotic (of solutions of a system of linear ordinary differential equations)      314.A
Property (properties) Baire      425.N
Property (properties) basic (of a structure)      409.B
Property (properties) bounded approximation      37.L
Property (properties) clustering      402.G
Property (properties) combinatorial      65.A
Property (properties) continuity, for Cech theory      201.M
Property (properties) countably productive      425.Y
Property (properties) covering homotopy      148.B
Property (properties) duality (of linear spaces)      256.G
Property (properties) equivalence      135.A
Property (properties) finite intersection      425.S
Property (properties) finite subset      396.F
Property (properties) global (in differential geometry)      109
Property (properties) homotopy extension      202.E
Property (properties) in the large (in differential geometry)      109
Property (properties) in the small (in differential geometry)      109
Property (properties) local (in differential geometry)      109
Property (properties) local (of a pseudodifferential operator)      345.A
Property (properties) Markov      261.B
Property (properties) micro-pseudolocal (of a pseudodifferential operator)      345.A
Property (properties) minimum curvature      223.F
Property (properties) minimum norm      223.F
Property (properties) of continuity (in a continuous geometry)      85.A
Property (properties) P conjecture      235.B
Property (properties) pseudo-orbit tracing      126.J
Property (properties) pseudolocal (of a pseudodifferential operator)      345.A
Property (properties) reproducing (of a probability distribution)      341.E App. Table
Property (properties) spectral      136.E
Property (properties) star-finite      425.S
Property (properties) strong Markov      261.B
Property (properties) topological      425.G
Property (properties) uniformity      399.N
Property (properties) universal mapping      52.L
Proposition modal      411.L
Proposition universal      411.B
Proposition variables      411.E
Proposition(s) existential      411.B
Propositional calculus      411.F
Propositional connectives      411.E
Propositional function      411.C
Propositional logic      411.E
Protter, Murray H.      78.r 110.r 216.r 323.r 327.r 350.r
Provable (formula)      411.I
Proximity function (of a meromorphic function)      272.B
Prufer ring      200.K
Prugovecki, Eduard      375.r
Przymusinski, TeodorC.      117.E
Przytycki, Feliks      126.K
Pseudo — Runge — Kutta method      303.D
Pseudo-arc      79.D
Pseudo-Hermitian manifold      344.F
Pseudo-isotopic      65.D
Pseudo-isotopy      65.D
Pseudo-orbit      126.J
Pseudo-orbit $\alpha$-      126.J
Pseudo-orbit tracing property      126.J
Pseudo-ordering      311.H
Pseudo-Riemannian metric      105.P
Pseudoanalytic function, K-      352.B
Pseudocompact (space)      425.S
Pseudoconformal geometry      344.A
Pseudoconformal transformation      344.A
Pseudoconformally equivalent      344.A
Pseudoconvex (domain)      21.G
Pseudoconvex (domain) Cartan      21.I
Pseudoconvex (domain) d-      21.G
Pseudoconvex (domain) Levi      21.I
Pseudoconvex (domain) locally Cartan      21.I
Pseudoconvex (domain) locally Levi      21.I
Pseudoconvex (domain) strictly      344.A
Pseudoconvex (domain) strongly      21.G
Pseudodifferential operator      251.O 274.F 345
Pseudodistance Caratheodory      21.O
Pseudodistance function      273.B
Pseudodistance Kobayashi      21.O
Pseudofunction      125.C
Pseudogeometric ring      284.F
Pseudogroup (of topological transformations)      105.Y
Pseudogroup (of topological transformations) of transformations (on a topological space)      90.D
Pseudogroup structure      105.Y
Pseudointerior      382.B
Pseudolocal property (of a pseudodifferential operator)      345.A
Pseudolocal property (of a pseudodifferential operator) micro-      345.A
Pseudomanifold      65.B
Pseudometric      273.B
Pseudometric space      273.B
Pseudometric space indiscrete      273.B
Pseudometric uniformity      436.F
Pseudometrizable      436.F
Pseudonorm (on a topological linear space)      37.O 424.F
Pseudopolynomial, distinguished      21.E
Pseudorandom numbers      354.B
Pseudosphere      111.I285.E
Pseudotensorial form      80.G
Pseudovaluation      439.K
Pseudovaluation $\psi$-collective      354.E
Psi function      174.B
PSL(n, k) (projective special linear group)      60.B
Psychometrics      346
Ptak, Vlastimil      424.X
pth power operation Pontryagin      64.B
pth power operation Steenrod      64.B
pth power, operator of summable      68.K
Ptolemy      187 432.C
PU(n) (projective unitary group)      60.F
Pugh, Charles C      126.J-L r
Puiseux series      339.A
Puiseux, Victor Alexandre      339.A
Pukanszky, Lajos      437.K U
Pullback (of a differential form)      105.Q
Pullback (of a distribution)      125.Q
Pullback (of a divisor)      16.M
Puppe exact sequence      202.G
Puppe, Dieter      200.r 202.G
Pure      136.E
Pure (continued fraction)      83.C
Pure (differential form)      367.H
Pure (state)      351.B
Pure geometry      181
Pure ideal      284.D
Pure integer programming problem      215.A
Pure number theory      156.E
Pure periodic continued fraction      83.C
Pure phase      402.G
Pure point spectrum      136.E
Pure strategy      173.B
Purely contractive      251.N
Purely contractive part      251.N
Purely d-dimensional analytic set      23.B
Purely d-dimensional analytic set (at a point)      23.B
Purely discontinuous distribution      341.D
Purely imaginary number      74.A
Purely infinite (von Neumann algebra)      308.E
Purely inseparable (extension of a field)      149.H
Purely inseparable (rational mapping)      16.I
Purely inseparable element (of a field)      149.H
Purely n-codimensional      125.W
Purely nondeterministic      395.D
Purely transcendental extension      149.K
Puri, MadanLai      280.r 371.r
Pursuit, curve of      93.H
Push-down automaton      31.D
Push-down storage      96.E
Pustyl’nik, Evgenii Izievich      251.r
Pusz, Wieslaw      402.G
Putnam, Calvin Richard      251.K
Putnam, Hilary Whitehall      81.D r r
Putnam’s theorem      251.K
Pyatetskii — Shapiro reciprocity law, Gel’fand      437.DD
Pyatetskii-Shapiro, Il’ya losifovich      32.H 122.G 125.r 159.J 384.A C r S
Pythagoras      60.O 118 A 139.B D
Pythagorean closure (of a field)      155.C
Pythagorean extension (of a field)      155.C
Pythagorean field      139.B 155.C
Pythagorean number      145
Pythagorean ordered field      60.O
Pythagorean Theorem      139.D
Q (rational numbers)      294.A D
q-block bundle      147.Q
q-block structure      147.Q
q-boundary      201.B
q-chains      201.B
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте