Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Space path (of a Markov process)      261.B
Space path-connected      79.B
Space pathological      65.F
Space Peirce      231.B
Space perfectly normal      425.Q
Space perfectly separable      425.P
Space phase      126.B 163.C 402.C
Space physical Hilbert      150.G
Space pinching a set to a point      202.E
Space polar      191.I
Space Polish      22.I 273.J
Space pre-Hilbert      197.B
Space precompact metric      273.B
Space precompact uniform      436.H
Space principal (of a flag)      139.B
Space principal half-      139.B
Space probability      342.B
Space product      425.K
Space product measure      270.H
Space product metric      273.B
Space product topological      425.K
Space product uniform      436.E
Space projective limit      210.C
Space projective, over $\Delta$      147.E
Space projectively flat      App. A Table
Space pseudocompact      425.S
Space pseudometric      273.B
Space pseudometrizable uniform      436.F
Space Q-      425.BB
Space quasi-Banach      37.O
Space quasicompact      408.S
Space quasidual (of a locally compact group)      437.I
Space quasinormed linear      37.0
Space quaternion hyperbolic      412.G
Space quotient      425.L
Space quotient (by a discrete transformation group)      122.A
Space quotient (by a transformation group)      122.A
Space quotient (of a linear space with respect to an equivalence relation)      256.F
Space quotient topological      425.L
Space r-closed      425.U
Space ramified covering      23.B
Space real Hilbert      197.B
Space real hyperbolic      412.G
Space real interpolation      224.C
Space real linear      256.A
Space real projective      343.D
Space real-compact      425.BB
Space reduced product      202.Q
Space reflection      359.B
Space reflexive Banach      37.G
Space regular      425.Q
Space regular Banach      37.G
Space representation (for a Banach algebra)      36.D
Space representation (of a representation of a Lie algebra)      248.B
Space representation (of a representation of a Lie group)      249.O
Space representation (of a unitary representation)      437.A
Space Riemannian      364.A
Space Riesz      310.B
Space right coset (of a topological group)      423.E
Space right projective      343.H
Space right quotient (of a topological group)      423.E
Space ringed      383.H
Space sample      342.B 396.B 398.A
Space scale of Banach      286.Z
Space Schwartz      424.S
Space separable      425.P
Space separable metric      273.E
Space separated      425.Q
Space separated uniform      436.C
Space sequential      425.CC
Space sequentially compact      425.S
Space sheaf      383.C
Space shrinking, to a point      202.E
Space Siegel upper half-, of degree n      32.F
Space Siegel, of degree n      32.F
Space simply connected      79.C 170
Space smashing, to a point      202.E
Space Sobolev      168.B
Space Spanier cohomology theory, Alexander — Kolmogorov-      201.M
Space spherical      285.D
Space Spivak normal fiber      114.J
Space standard Borel      270.C
Space standard measurable      270.C
Space standard vector (of an affine space)      7.A
Space state (in static model in catastrophe theory)      51.B
Space state (of a dynamical system)      126.B
Space state (of a Markov process)      261 B
Space state (of a stochastic proccess)      407.B
Space Stein      23.F
Space stratifiable      425.Y
Space strongly paracompact      425.S
Space structure (of a Banach algebra)      36.D
Space subbase for      425.F
Space Suslin      22.I 425.CC
Space symmetric Hermitian      412.E
Space symmetric homogeneous      412.B
Space symmetric Riemannian      412
Space symmetric Riemannian homogeneous      412.B
Space tangent      105.H
Space tangent vector      105.H
Space Teichmiiller      416
Space tensor, of degree k      256.J
Space tensor, of type (p, q)      256.J
Space test function      125.S
Space Thorn      114.G
Space Tikhonov      425.Q
Space time parameter      260.A
Space topological complete      436.I
Space topological linear      424.A
Space topological vector      424.A
Space total (of a fiber bundle)      147.B
Space total (of a fiber space)      148.B
Space totally bounded metric      273.B
Space totally bounded uniform      436.H
Space totally disconnected      79.D
Space transformation (of an algebraic group)      13.G
Space underlying topological (of a complex manifold)      72.A
Space underlying topological (of a topological group)      423.A
Space uniform topological      436.C
Space uniformizable topological      436.H
Space uniformly locally compact      425.V
Space unisolvent      142.B
Space universal covering      91.B
Space universal Teichmueller      416
Space vector, over K      256.A
Space velocity phase      126.L
Space weakly symmetric Riemannian      412.J
Space well-chained metric      79.D
Space wild      65.F
Space(s)      381.B
Space-time Brownian motion      45.F
Space-time inversion      258.A
Space-time manifold      359.D
Space-time, Minkowski      359.B
Spacelike      258.A 359.B
Span (a linear subspace by a set)      256.F
Span (of a domain)      77.E
Span (of a Riemann surface)      367.G
Spanier, Edwin Henry      64.r 70.r 148.r 170.r 201.M.r 202.I r305.r
Spanning tree      186.G
sparse      302.C
Spath type division theorem (for microdifferential operators)      274.F
Spath, R. A.      274.F314.A
Spatial (*-isomorphism on von Neumann algebras)      308.C
Spatial tensor product      36.H
Spatially homogeneous (process)      261.A
Spatially isomorphic (automorphisms on a measure space)      136.E
Spearman rank correlation      371.K
Spearman, Charles      346.F r
Spec (spectrum)      16.D
Specht, Wilhelm      110.r 151.r 190.r
Special Clifford group      61.D
Special divisor      9.C
Special flow      136.D
Special function of confluent type      389.A
Special function of ellipsoidal type      389.A
Special function of hypergeometric type      389.A
Special function(s)      389 App. Table
Special functional equations      388
Special isoperimetric problem      228.A
Special Jordan algebra      231.A
Special linear group      60.B
Special linear group (over a noncommutative field)      60.O
Special linear group of degree n over K      60.B
Special linear group projective      60.B
Special linear group projective (over a noncommutative field)      60.O
Special orthogonal group      60.I
Special orthogonal group complex      60.I
Special orthogonal group over Kwith respect to $\mathscr Q$      60.K
Special principle of relativity      359.B
Special relativity      359.B
Special representation (of a Jordan algebra)      231.C
Special surface      110.A
Special theory of perturbations      420.E
Special theory of relativity      359.A
Special unitary group      60.F
Special unitary group (relative to an $\varepsilon$-Hermitian form)      60.O
Special unitary group over K      60.H
Special unitary group projective, over K      60.H
Special universal enveloping algebra (of a Jordan algebra)      231.C
Special valuation      439.B
Speciality index $\mathfrak o$- (of a divisor of an algebraic curve)      9.F
Speciality index (of a divisor of an algebraic curve)      9.C
Speciality index (of a divisor on an algebraic surface)      15.D
Specialization      16.A
Specialization (in etale topology)      16.AA
Species ellipsoidal harmonics of the first, second, third or fourth      133.C
Species Lame functions of the first, second, third or fourth      133.C
Species singular projective transformation of the hth      343.D
Species singular quadric hypersurface of the hth (in a projective space)      343.E
Specific heat at constant pressure      419.B
Specific heat at constant volume      419.B
Specific resistance      130.B
Specification      401.A
Specification problem of      397.P
Specificity      346.F
Specker, W.H.      142.C
Spector, Clifford      81.r 156.E r r
Spectral analysis      390.A
Spectral concentration      331.F
Spectral decomposition      126.J 395.B
Spectral density, quadrature      397.N
Spectral functor      200.J
Spectral geometry      391.A
Spectral integral      390.D
Spectral invariant      136.E
Spectral mapping theorem      251.G
Spectral measure      390.B K C
Spectral measure complex      390.D
Spectral measure maximum      390.G
Spectral measure real      390.D
Spectral method      304.B
Spectral operator      390.K
Spectral property      136.E
Spectral radius      126.K 251.F 390.A
Spectral representation      390.E
Spectral representation complex      390.E
Spectral resolution      390.E
Spectral resolution complex      390.E
Spectral sequence      200.J
Spectral sequence (of a fiber space)      148.E
Spectral sequence cohomology      200.J
Spectral sequence Hodge      16.U
Spectral synthesis      36.L
Spectral theorem      390.E
Spectrally isomorphic (automorphisms on a measure space)      136.E
Spectrum      390.A
Spectrum (in homotopy theory)      202.T
Spectrum (of a commutative ring)      16.D
Spectrum (of a domain in a Riemannian manifold)      391.A
Spectrum (of a hyperfunction)      274.E
Spectrum (of a linear operator)      251.F 390.A
Spectrum (of a spectral measure)      390.C
Spectrum (of an element of a Banach algebra)      36.C
Spectrum (of an integral equation)      217.J
Spectrum absolutely continuous      390.E
Spectrum condition      150.D
Spectrum continuous (of a linear operator)      390.A
Spectrum continuous (of an integral equation)      217.J
Spectrum countable Lebesgue      136.E
Spectrum discrete      136.E 390.E
Spectrum Eilenberg — MacLane      202.T
Spectrum essential      390.E I
Spectrum formal (of a Noetherian ring)      16.X
Spectrum forp-forms      391.B
Spectrum intermittent      433.C
Spectrum joint      36.M
Spectrum Kolmogorov      433.C
Spectrum point      390.A
Spectrum pure point      136.E
Spectrum quasidiscrete      136.E
Spectrum residual      390.A
Spectrum simple      390.G
Spectrum singular      125.CC 345.A 390.A
Spectrum singular (of a hyperfunction)      274.E
Spectrum singularity (of a hyperfunction)      125.CC 274.E
Spectrum sphere      202.T
Spectrum stable homotopy group of the Thorn      114.G
Spectrum Thorn      114.G 202.T
Speed measure      115.B
Speer, Eugene Richard      146.A
Speiser theorem, Hilbert-      172.J
Speiser, Andreas      151.r 172.J 190.r
Spencer mapping (map), Kodaira-      72.G
Spencer, Domina Eberle      130.r
Spencer, Donald Clayton      12.B 15.F 72.G r r C
Spencer, Thomas      402.G
Sperner, Emanuel      7.r 256.r 343.r 350.r
Sphere $\varepsilon$-(of a point)      273.C
Sphere bundle n-      147.K
Sphere bundle n- cotangential      274.E
Sphere bundle n- normal      274.E
Sphere bundle n- tangential      274.E
Sphere bundle n- unit tangent      126.L
Sphere circumscribing (of a simplex)      139.I
Sphere combinatorial, group of oriented differentiable structures on the      114.I
Sphere complex      74.D
Sphere exotic      114.B
Sphere geometry      76.C
Sphere homotopy n-      65.C
Sphere homotopy n-, h-cobordism group of      114.I
Sphere horned, Alexander’s      65.G
Sphere open      140
Sphere open n-      140
Sphere pair      235.G 65.D
Sphere PL (k-1)-      65.C
Sphere pseudo-      111.I
Sphere Riemann      74.D
Sphere solid      140
Sphere solid n-      140
Sphere spectrum      202.T
Sphere theorem (characterization of a sphere)      178.C
Sphere theorem (embedding in a 3-manifold)      65.E
Sphere topological      140
Sphere topological solid      140
Sphere unit      140
Sphere w-      74.D
Sphere z-      74.D
Sphere(s)      139.I 150
Spherical (real hypersurface)      344.C
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте