Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Value exceptional, Nevanlinna      272.E
Value exceptional, Picard      272.E
Value expectation (of an observable)      351.B
Value expected (of a random variable)      342.C
Value function      108.B 405.A
Value gap (of a point on a Riemann surface)      11.D
Value group (of a multiplicative valuation)      439.C
Value group (of an additive valuation)      439.B
Value initial (for ordinary differential equations)      316.A
Value initial (for partial differential equatons)      321.A
Value initial (for stochastic differential equations)      406.D
Value limit (of a mapping)      87.F
Value mean (of a function on a compact group)      69.A
Value mean (of a weakly stationary process)      395.C
Value most probable      401.E
Value principal (of inverse trigonometric functions)      131.E
Value principal (of log z)      131.G
Value principal, Cauchy (of an improper integral)      216.D
Value principal, Cauchy (of the integral of a function in $(-\infty,\infty)$)      216.E
Value proper (of a boundary value problem)      315.B
Value proper (of a linear mapping)      269.L
Value proper (of a linear operator)      390.A
Value proper (of a matrix)      269.F
Value range of (of a meromorphic function)      62.A
Value regular      105.J
Value sample      396.B
Value sample characteristic      396.C
Value Shapley      173.D
Value singular      302.A
Value singular, decomposition (SVD)      302.E
Value starting      303.E
Value stationary (of a function)      106.L
Value true, of parameter      398.A
Value truth (of a formula)      411.E
Value(s) (of an infinite continued fraction)      83.A
van Beijeren, Henk      402.G
van Ceulen, Ludolf      332
Van Daele, Alfons      308.H
van Dantzig, D.      109 434.C
van den Berg, Franciscus Johannes      19.B
van der Corput, Johannes Gualtherus      4.C 182.H 242.A
van der Pol differential equation      290.C
van der Pol, Balthasar      240.r 290.C
van der Waerden test      371.C
van der Waerden — Bortolotti covariant derivative      417.E
van der Waerden, Bartel Leendert      8.* r r
van Hove sense, limit in      402.G
van Hove, Leon Charles Prudent      351.K 402.G
van Kampen theorem (on fundamental groups)      170
van Kampen, Egbertos R.      170
Van Moerbeke, Pierre      287.C
van Roomen, Adriaan      444
van Schooten, Frans      444.r
Vandermonde determinant      103.G
Vandermonde, Alexandre Theophile      103.G 190.Q
Vandiver conjecture      14.L
Vandiver, Harry Shultz      14.L 145.* r
Vanishing cocycle      16.U
Vanishing cycle      418.F
Vanishing theorem (on compact complex manifolds)      194.G
Vanishing theorem Kodaira      232.D
Varadarajan, Veeravalli Seshadri      249.r
Varadhan, Sathamangalam Ranga Ayyangar Srinivasa      115.C D r D r
Varadier, M.      443.A
Varaiya, Pravin P.      86.D 108.B 292.F
Varchenko, A.N.      418.r
Varga, Otto      152.C
Varga, Richard Steven      302.r
Variability, measure of      397.C
Variable (of a polynomial)      369.A
Variable artificial      255.C
Variable auxiliary      373.C
Variable basic      255.A
Variable bound      411.C
Variable canonical (in analytical dynamics)      271.F
Variable change of (in integral calculus)      216.C
Variable complex      165.C
Variable complex, theory of functions of      198.Q
Variable component (of a linear system)      15.C 16.N
Variable dependent      165.C
Variable differential (of a differential polynomial)      113
Variable endogenous      128.C
Variable exogenous      128.C
Variable explanatory      403.D
Variable hidden, theories      351.L
Variable independent      165.C
Variable individual      411.H
Variable inner      25.B
Variable lagged      128.C
Variable method, discrete      303.A
Variable object      411.G
Variable outer      25.B
Variable predetermined      128.C
Variable predicate      411.G H
Variable proposition      411.E
Variable random      342.C
Variable random, $(S,\mathfrak E)$-valued      342.C
Variable random, $\mathbf R^n$-valued      342.C
Variable random, independent      342.C
Variable random, joint      342.C
Variable random, n-dimensional      342.C
Variable real      165.C
Variable sampling inspection by      404.C
Variable separation of      322.C
Variable slack      255.A
Variable state      127.A
Variable(s)      165.C
Variable-step variable-order (VSVO) algorithms      303.E
Variance (of a probability distribution)      341.B
Variance (of a random variable)      342.C
Variance (of univariate quantitative data)      397.C
Variance analysis of      400.H 403.D
Variance between-group      397.L
Variance generalized      280.E 397.J
Variance matrix      341.B
Variance multivariate analysis of      280.B
Variance population      396.C
Variance sample      396.C
Variance sample generalized      280.E
Variance uniformly minimum unbiased estimator      399.C
Variance within-group      397.L
Variance-covariance matrix      341.B 397.J
Variate canonical      280.E
Variate fixed      403.D
Variation calculus of      46
Variation calculus of, classical theory of      46.C
Variation calculus of, conditional problems in      46.A
Variation calculus of, fundamental lemma in      46.B
Variation coefficient of      397.C
Variation curve      178.A
Variation first      46.B
Variation first, formula      178.A
Variation geodesic      178.A
Variation lower (of a set function)      380.B
Variation negative (of a mapping)      246.H
Variation negative (of a real bounded function)      166.B
Variation of constants, Lagrange’s method of      252.D
Variation of constants, method of      55.B 252.I
Variation of parameters, Lagrange method of      252.D
Variation of parameters, method of      App. A Table
Variation one-parameter      178.A
Variation positive (of a mapping)      246.H
Variation positive (of a real bounded function)      166.B
Variation proper      279.F
Variation quadratic, process      406.B
Variation second formula      178.A
Variation total (of a finitely additive vector measure)      443.G
Variation total (of a mapping)      246.H
Variation total (of a real bounded function)      166.B
Variation total (of a set function)      380.B
Variation upper      380.B
Variation vector field      178.A
Variation(s) (of an integral)      100.E
Variational derivative      46.B
Variational equation      316.F 394.C
Variational formula, constant      163.E
Variational inequality      440
Variational inequality of evolution      440.C
Variational inequality stationary      440.B
Variational method      438.B
Variational principles (in ergodic theory)      136.G
Variational principles (in statistical mechanics)      340.B 402.G
Variational principles (in the theory of elasticity)      271.G
Variational principles for the topological pressure      136.H
Variational principles with relaxed continuity requirements      271.G
Variational principles(s)      441
Variational problem, Gauss      338.J
Variety (algebraic variety)      16.A
Variety (of block design)      102.B
Variety Abelian      3
Variety Abelian, isogeneous      3.C
Variety Abelian, polarized      3.G
Variety Abelian, simple      3.B
Variety abstract      16.C
Variety abstract algebraic      16.C
Variety affine      16.A
Variety affine algebraic      16.A
Variety Albanese      16.P
Variety Albanese (of a compact Kahler manifold)      232.C
Variety algebraic      16
Variety algebraic group      13.B
Variety almost all points of a      16.A
Variety Brieskorn      418.D
Variety characteristic (of a microdifferential equation)      274.G
Variety Chow      16.W
Variety complex algebraic      16.T
Variety function on a      16.A
Variety generalized Jacobian      9.F 11.C
Variety group      13.B 16.H
Variety irreducible      16.A
Variety Jacobian      9.E 11.C 16.P
Variety Landau      146.C
Variety Landau — Nakanishi      146.C 386.C
Variety linear (in an $\Omega$-module)      422.L
Variety linear, linearly compact      422.L
Variety minimal      275.G
Variety nonsingular      16.F
Variety normal      16.F
Variety normal algebraic      16.F
Variety Picard      16.P
Variety Picard (of a compact Kahler manifold)      232.C
Variety prealgebraic      16.C
Variety product algebraic      16.A
Variety projective      16.A
Variety projective algebraic      16.A
Variety quasi-affine algebraic      16.C
Variety quasiprojective algebraic      16.C
Variety rational      16.J
Variety rational function on a      16.A
Variety reducible      16.A
Variety Schubert      56.E
Variety smooth      16.F
Variety strict Albanese      16.P
Variety toric      16.Z
Variety unirational      16.J
Variety Zariski topology of a      16.A
Varifold      275.G
Varopoulos, Nicholas Theodoros      192.U
Varopoulos, T.      17.C 267.r
Varouchas, J.      232.C
Varshamov — Gilbert — Sacks bound      63.B
Varshamov, Rom Rubenovich      63.B
Vasilesco, Florin      120.D
Vaughan, Robert Charles      123.E
Vaught, Robert L.      276.D F
Veblen, Oswald      90.r 109.* r r
Vector (in a linear space)      256.A
Vector algebra      App. A Table
Vector analysis and coordinate systems      App. A Table
Vector analytic      437.S
Vector bundle      147.F
Vector bundle (algebraic)      16.Y
Vector bundle ample      16.Y
Vector bundle complex      147.F
Vector bundle cotangent      147.F
Vector bundle dual      147.F
Vector bundle indecomposable      16.Y
Vector bundle normal      105.L
Vector bundle normal k-      114.J
Vector bundle quaternion      147.F
Vector bundle semistable      16.Y
Vector bundle stable      16.Y 237.B
Vector bundle stably equivalent      237.B
Vector bundle tangent      105.H 147.F
Vector characteristic (of a linear mapping)      269.L
Vector characteristic (of a linear operator)      390.A
Vector characteristic (of a matrix)      269.F
Vector coherent      377.D
Vector collinear      442.A
Vector column      269.A
Vector contravariant      256.J
Vector coplanar      442.A
Vector covariant      256.J
Vector cyclic (of a representation space of a unitary representation)      437.A
Vector effect      102.A
Vector eigen-(of a linear mapping)      269.L
Vector eigen-(of a linear operator)      390.A
Vector eigen-(of a matrix)      269.F
Vector eigen-, generalized      390.B
Vector error      102.A
Vector field (in a 3-dimensional Euclidean space)      442.D
Vector field (on a differentiable manifold)      105.M
Vector field Anosov      126.J
Vector field Axiom A      126.J
Vector field basic      80.H
Vector field contravariant      105.O
Vector field covariant      105.O
Vector field differentiation of      App. A Table
Vector field formal      105.AA
Vector field fundamental      191.A
Vector field G-      237.H
Vector field Hamiltonian      126.L 219.C
Vector field holomorphic      72.A
Vector field integral of      App. A Table
Vector field irrotational      442.D
Vector field Killing      364.F
Vector field Lagrangian      126.L
Vector field lamellar      442.D
Vector field Morse — Smale      126.J
Vector field of class $C^r$      105.M
Vector field solenoidal      442.D
Vector field variation      178.A
Vector field without source      442.D
Vector field without vortex      442.D
Vector fixed      442.A
Vector flux (through a surface)      442.D
Vector four-      359.C
Vector four-, energy-momentum      258.C
Vector free      442.A
Vector free vacuum      150.C
Vector function, measurable      308.G
Vector fundamental (in a vector space)      442.A
Vector group      422.E
Vector horizontal      80.C
Vector independent      66.F
Vector integral      443.A
Vector invariant      226.C
Vector lattice      310.B
Vector lattice $\sigma$-complete      310.C
Vector lattice Archimedean      310.C
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте