|
 |
Авторизация |
|
 |
Поиск по указателям |
|
 |
|
 |
|
 |
 |
|
 |
|
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 |
|
 |
Предметный указатель |
Singular support (of a distribution) 112.C
Singular support (of a hyperfunction) 125.W
Singular value 302.A
Singular value decomposition (SVD) 302.E
Singularity (singularities) 51.C 198.M
Singularity algebraic 198.M
Singularity cusp 418.C
Singularity direct transcendental (of an analytic function in the wider sense) 198.P
Singularity elliptic 418.C
Singularity essential (of a complex function) 198.D
Singularity fixed (of an algebraic differential equation) 288.A
Singularity indirect transcendental (of an analytic function in the wider sense) 198.P
Singularity isolated (of a complex function) 198.M
Singularity isolated (of an analytic function) 198.D
Singularity logarithmic (of an analytic function in the wider sense) 198.P
Singularity logarithmic (of an analytic function) 198.M
Singularity movable (of an algebraic differential equation) 288.A
Singularity of an analytic function 198.M
Singularity ordinary (of an analytic function in the wider sense) 198.P
Singularity principle of condensation of 37.H
Singularity propagation of 325.M
Singularity quotient 418.C
Singularity rational 418.C
Singularity regular (of a coherent if-module) 274.H
Singularity removable (of a complex function) 198.D
Singularity removable (of a harmonic function) 193.L
Singularity resolution of 16.L 23.D 418.B
Singularity set (of a proper meromorphic mapping) 23.D
Singularity space of 390.E
Singularity spectrum (of a hyperfunction) 125.CC 274.E
Singularity theorem (in physics) 359.F
Singularity theory of 418
Singularity transcendental (of an analytic function in the wider sense) 198.P
Singularity two-dimensional 418.C
Sinh (hyperbolic sine) 131.F
Sinha, Kalya B. 375.r
Sink 126.G 281.C
Sinnott, W. 450.J
Sinusoid 93.D
Sinusoidal wave 446
Sirao, Tunekiti 45.I r
Site 16.AA
Site etale 16.AA
Site flat 16.AA
Site percolation process 340.D
Site presheafon 16.AA
Site Zariski 16.AA
Sitnikov, Kirill Aleksandrovich 117.D
Siu Yum-Tong 195.r 232.C 364.r
Size (complexity of computation) 71.A
Size (of a balanced array) 102.L
Size (of a population) 397.B
Size (of a random sample) 396.B
Size (of a sample) 401.E
Size (of a test) 400.A
Size block 102.B
Size sample 373.A
Size step 303.B
Sjolin, Per B. 159.r
Skeleton (of a domain in ) 21.C
Skeleton r- (of a Euclidean complex) 70.B
Skew field 149.A 368.B
Skew h-matrix 269.I
Skew product (of measure-preserving transformations) 136.D
Skew surface 111.I
Skew-Hermitian form 256.Q
Skew-Hermitian matrix 269.K
Skew-symmetric (multilinear mapping) 256.H
Skew-symmetric matrix 269.B
Skew-symmetric tensor 256.N
skewness 396.C 397.C
Skewness coefficient of 341.H
Skibinsky, Morris 396.J
Skitovich — Darmois theorem 374.H
Skitovich, Viktor Pavlovich 374.H
Skolem paradox 156.E
Skolem theorem on the impossibility of characterizing the system of natural numbers by axioms 156.E
Skolem — Lowenheim theorem 156.E
Skolem, Albert Thoralf 97.B 118.C D r
Skornyakov, Lev Anatol’evich 85.r
Skorokhod, Anatolii Vladimirovich 44.r 115.D r r406.D F r
Skramstad, H.K. 433.A
SL(n, K) (special linear group) 60.B
Slack variable 255.A
Slackness, Tucker theorem on complementary 255.B.
Slant product (of a cochain and a chain) 201.K
Slant product (of a cohomology class and a homology class) 201.K
Slater constraint qualification 292.B
Slater, Lucy Joan 167.r 206.r 292.B NTR
Slender body theorem 205.B
Slice knot 235.G
Slice representation 431.C
Slice theorem, differentiable 431.C
Slicing theorem, watermelon- 125.DD
Slide rule 19.A
Sliding block code 213.E
Slit (of a plane domain) 333.A
Slit domain 333.A
Slit mapping extremal horizontal 367.G
Slit mapping extremal vertical 367.G
Slodowy, Peter 418.r
Slope function 46.C
Slow wave 259
Slowly increasing -function 125.O
Slowly increasing distribution 125.N
Slowly increasing function in the sense of Deny 338.P
Slowly increasing sequences 168.B
Smale condition C, Palais- 279.E 286.Q
Smale diffeomorphism, Morse- 126.J
Smale flow, Morse- 126.J
Smale theorem, Sard- 286.P
Smale vector field, Morse- 126.J
Smale, Stephen 65.C 105.Z r B D F r J K r E Q
Small inductive dimension (ind) 117.B
Small numbers, law of 250.B
Small sample 401.F
Small set of order U 436.G
Small, Charles 29.r
Small-displacement theory of elasticity 271.G
Smaller topology 425.H
Smart, D.R. 153.r
Smart, William Marshall 55.r 392.r
Smash product 202.F
Smashing (a space to a point) 202.E
Smirnov test statistic, Kolmogorov- 374.E
Smirnov test, Kolmogorov- 317.F
Smirnov theorem 250.F
Smirnov, Modest Mikhallovich 326.r
Smirnov, Nikolai Vasil’evich 250.F r
Smirnov, Vladimir Ivanovich 20.r 106.r 216.r 371.F
Smirnov, Yurii Mikhallovich 273.K
Smith conjecture 235.E
Smith convergence, Moore- 87.H
Smith theorem 431.B
Smith, Brian T. 298.r 301.O
Smith, David Eugene 187.r
Smith, Gordon Dennis 304.r
Smith, Guy Watson 19.r
Smith, H.L. 87.H K r
Smith, Henry John Stephen 179.B
Smith, J. M. 263.r
Smith, Kennan Tayler 276.E 338.E
Smith, Paul Althaus 235.E 431.B
Smith, Paul John 151.I
Smithies, Frank 217.r
Smooth (function) 106.K
Smooth (measure for a Riemann metric) 136.G
Smooth (morphism of schemes) 16.F
Smooth (point of a variety) 16.F
Smooth boundary, domain with (in a -manifold) 105.U
| Smooth characteristic class of foliations 154.G
Smooth in the sense of A.Zygmund 168.B
Smooth invariant measure 126.J
Smooth manifold 105.D 114.B
Smooth piecewise (curve) 364.A
Smooth structure 114.B
Smooth uniformly (normed linear space) 37.G
Smooth variety 16.F
Smoothing (of a combinatorial manifold) 114.C
Smoothing problem 114.C
Smorodinsky, Meir 136.E
Smullyan, Raymond M. 411.r
Smyth, Brian 275.F 365.H L
Smythe, Robert T. 340.r
Sn 134.J App. Table
Snapper polynomial 16.E
Snapper, Ernst 16.E 200.M
Sneddon, Ian Naismith 389.r
Sneddon, W.J. 336.r
Snell (Snel van Roijen, Snellius), Willebrord 180.A
Snell, James Laurie 260.J
Sobolev inequality, Hardy — Littlewood- 224.E
Sobolev space 168.B
Sobolev — Besov embedding theorem 168.B
Sobolev, Sergei L’vovich 20 46.r 125.A 162 168.B r
Sobolevskii, Pavel Evseevich 251.r 286.r 378.I J
Software 75.C
Sohncke, Leonhard 92.F
Sojourn time density 45.G
Solenoidal (vector field) 442.D
Solid geometry 181
Solid harmonics 393.A
Solid n-sphere 140
Solid sphere 140
Solid sphere topological 140
Solitar, Donald Moiseevitch 161.r
Solitary wave 387.B
Soliton 387.B
Solovay, Robert M. 22.F H F r
Solution (of a functional-differential equation) 163.C
Solution (of a partial differential equation) 320.A
Solution (of a system of differential equations) 313.B
Solution (of a system of linear equations) 269.M
Solution (of a system of partial differential equations) 428.B
Solution (of an inequality) 211.A
Solution (of an ordinary differential equation) 313.A
Solution (of equations of neutral type) 163.H
Solution (of partial differential equations of first order) App.A Table
Solution (of partial differential equations of second order) App. A Table
Solution algebraic (of an algebraic equation) 10.D
Solution asymptotic 325.L
Solution basic 255.A
Solution basic feasible 255.A
Solution basic optimal 255.A
Solution Bayes 398.B
Solution Bayes, in the wider sense 398.B
Solution by quadrature App. A Table
Solution by radicals (of an algebraic equation) 10.D
Solution classical (to Plateau’s problem) 275.C
Solution complete (of partial differential equations) 320.C
Solution curve (of ordinary differential equations) 316.A
Solution Douglas — Rado (to Plateau’s problem) 275.C
Solution d’Alembert 325.D
Solution elementary (of a differential operator) 112.B
Solution elementary (of a linear partial differential operator) 320.H
Solution elementary (of a partial differential operator) App.A Table
Solution elementary (of partial differential equations of elliptic type) 323.B
Solution equilateral triangle 420.B
Solution feasible (of a linear equation in linear programming) 264.A
Solution formal (for a system of ordinary differential equations) 289.C
Solution fundamental (of a Cauchy problem) 325.D
Solution fundamental (of a differential operator) 112.B
Solution fundamental (of a linear parabolic equation with boundary conditions) 327.F
Solution fundamental (of a linear partial differential operator) 320.H
Solution fundamental (of a partial differential equation of parabolic type) 327.D
Solution fundamental (of a partial differential operator with -coefficients) 189.C
Solution fundamental (of an evolution equation) 189.C
Solution fundamental (of partial differential equations of elliptic type) 323.B
Solution fundamental system of (of a homogeneous linear ordinary differential equation) 252.B
Solution fundamental system of (of a homogeneous system of linear differential equations of first order) 252.H
Solution general (of a differential equation) 313.A
Solution general (of a general partial differential equation) 320.C
Solution general (of a nonhomogeneous linear difference equation) 104.D
Solution general (of a system of differential equations) 313.C
Solution general (of a system of partial differential equations) 428.B
Solution general (of partial differential equations) 320.C
Solution generalized Bayes 398.B
Solution genuine 323.G
Solution half-periodic (of the Hill equation) 268.E
Solution Hill’s method of 268.B
Solution Hopf’s weak 204.C
Solution inner 25.B
Solution Kirchhoff 325.D
Solution maximum 316.E
Solution minimax 398.B
Solution minimum 316.E
Solution Nash bargaining 173.C
Solution numerical (of algebraic equations) 301
Solution numerical (of integral equations) 217.N
Solution numerical (of linear equations) 302
Solution numerical (of ordinary differential equations) 303
Solution numerical (of partial differential equations) 304
Solution of boundary value problems App. A Table
Solution of the Cauchy problem 325.D
Solution operator 163.E
Solution optimal (of a linear programming problem) 255.A
Solution optimal (of a nonlinear programming problem) 292.A
Solution ordinary (of a differential ideal) 428.E
Solution outer 25.B
Solution particular (for a system of differential equations) 313.C
Solution particular (of a differential equation) 313.A
Solution particular (of partial differential equations) 320.C
Solution pathwise uniqueness of 406.D
Solution periodic (of the Hill equation) 268.E
Solution Perron — Brelot (of the Dirichlet problem) 120.C
Solution Perron — Wiener — Brelot (of the Dirichlet problem) 120.C
Solution Poisson 325.D
Solution primary (of a homogeneous partial differential equation) 320.E
Solution primitive (of a partial differential equation) 320.E
Solution principal 104.B
Solution quasiperiodic (of the Hill equation) 268.B
Solution regular (of a differential ideal) 428.E
Solution singular App. A Table
Solution singular (df a differential ideal) 428.E
Solution singular (of a general partial differential equation) 320.C
Solution singular (of an ordinary differential equation) 313.A App. Table
Solution singular (of partial differential equations) 320.C
Solution stable (of the Hill equation) 268.E
Solution straight line 420.B
Solution strong (of Navier — Stokes equation) 204.C
Solution strong (of stochastic differential equations) 406.D
Solution system of fundamental (of a system of linear homogeneous equations) 269.M
Solution to the martingale problem 115.C
Solution trivial (of a system of linear homogeneous equations) 269.M
Solution unique strong 406.D
Solution uniqueness theorem of (of systems of linear differential equations of the first order) 316.D G
Solution unstable (of the Hill equation) 268.E
Solution von Neumann — Morgenstern 173.D
Solution weak 204.C 323.G 378.I
Solvability, Cartan’s criterion of 248.F
Solvable (by a Turing machine) 71.B
Solvable (ideal of a Lie algebra) 248.C
Solvable (Lie algebra) 248.C
Solvable (Lie group) 249.D
Solvable algebra 231.A
Solvable algebraic group 13.F
Solvable algebraic group k- 13.F
Solvable by radicals 172.H
Solvable group 190.I
Solvable group - 151.F
|
|
 |
Реклама |
 |
|
|