Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Singular support (of a distribution)      112.C
Singular support (of a hyperfunction)      125.W
Singular value      302.A
Singular value decomposition (SVD)      302.E
Singularity (singularities)      51.C 198.M
Singularity algebraic      198.M
Singularity cusp      418.C
Singularity direct transcendental (of an analytic function in the wider sense)      198.P
Singularity elliptic      418.C
Singularity essential (of a complex function)      198.D
Singularity fixed (of an algebraic differential equation)      288.A
Singularity indirect transcendental (of an analytic function in the wider sense)      198.P
Singularity isolated (of a complex function)      198.M
Singularity isolated (of an analytic function)      198.D
Singularity logarithmic (of an analytic function in the wider sense)      198.P
Singularity logarithmic (of an analytic function)      198.M
Singularity movable (of an algebraic differential equation)      288.A
Singularity of an analytic function      198.M
Singularity ordinary (of an analytic function in the wider sense)      198.P
Singularity principle of condensation of      37.H
Singularity propagation of      325.M
Singularity quotient      418.C
Singularity rational      418.C
Singularity regular (of a coherent if-module)      274.H
Singularity removable (of a complex function)      198.D
Singularity removable (of a harmonic function)      193.L
Singularity resolution of      16.L 23.D 418.B
Singularity set (of a proper meromorphic mapping)      23.D
Singularity space of      390.E
Singularity spectrum (of a hyperfunction)      125.CC 274.E
Singularity theorem (in physics)      359.F
Singularity theory of      418
Singularity transcendental (of an analytic function in the wider sense)      198.P
Singularity two-dimensional      418.C
Sinh (hyperbolic sine)      131.F
Sinha, Kalya B.      375.r
Sink      126.G 281.C
Sinnott, W.      450.J
Sinusoid      93.D
Sinusoidal wave      446
Sirao, Tunekiti      45.I r
Site      16.AA
Site etale      16.AA
Site flat      16.AA
Site percolation process      340.D
Site presheafon      16.AA
Site Zariski      16.AA
Sitnikov, Kirill Aleksandrovich      117.D
Siu Yum-Tong      195.r 232.C 364.r
Size (complexity of computation)      71.A
Size (of a balanced array)      102.L
Size (of a population)      397.B
Size (of a random sample)      396.B
Size (of a sample)      401.E
Size (of a test)      400.A
Size block      102.B
Size sample      373.A
Size step      303.B
Sjolin, Per B.      159.r
Skeleton (of a domain in $C^n$)      21.C
Skeleton r- (of a Euclidean complex)      70.B
Skew field      149.A 368.B
Skew h-matrix      269.I
Skew product (of measure-preserving transformations)      136.D
Skew surface      111.I
Skew-Hermitian form      256.Q
Skew-Hermitian matrix      269.K
Skew-symmetric (multilinear mapping)      256.H
Skew-symmetric matrix      269.B
Skew-symmetric tensor      256.N
skewness      396.C 397.C
Skewness coefficient of      341.H
Skibinsky, Morris      396.J
Skitovich — Darmois theorem      374.H
Skitovich, Viktor Pavlovich      374.H
Skolem paradox      156.E
Skolem theorem on the impossibility of characterizing the system of natural numbers by axioms      156.E
Skolem — Lowenheim theorem      156.E
Skolem, Albert Thoralf      97.B 118.C D r
Skornyakov, Lev Anatol’evich      85.r
Skorokhod, Anatolii Vladimirovich      44.r 115.D r r406.D F r
Skramstad, H.K.      433.A
SL(n, K) (special linear group)      60.B
Slack variable      255.A
Slackness, Tucker theorem on complementary      255.B.
Slant product (of a cochain and a chain)      201.K
Slant product (of a cohomology class and a homology class)      201.K
Slater constraint qualification      292.B
Slater, Lucy Joan      167.r 206.r 292.B NTR
Slender body theorem      205.B
Slice knot      235.G
Slice representation      431.C
Slice theorem, differentiable      431.C
Slicing theorem, watermelon-      125.DD
Slide rule      19.A
Sliding block code      213.E
Slit (of a plane domain)      333.A
Slit domain      333.A
Slit mapping extremal horizontal      367.G
Slit mapping extremal vertical      367.G
Slodowy, Peter      418.r
Slope function      46.C
Slow wave      259
Slowly increasing $C^{\infty}$-function      125.O
Slowly increasing distribution      125.N
Slowly increasing function in the sense of Deny      338.P
Slowly increasing sequences      168.B
Smale condition C, Palais-      279.E 286.Q
Smale diffeomorphism, Morse-      126.J
Smale flow, Morse-      126.J
Smale theorem, Sard-      286.P
Smale vector field, Morse-      126.J
Smale, Stephen      65.C 105.Z r B D F r J K r E Q
Small inductive dimension (ind)      117.B
Small numbers, law of      250.B
Small sample      401.F
Small set of order U      436.G
Small, Charles      29.r
Small-displacement theory of elasticity      271.G
Smaller topology      425.H
Smart, D.R.      153.r
Smart, William Marshall      55.r 392.r
Smash product      202.F
Smashing (a space to a point)      202.E
Smirnov test statistic, Kolmogorov-      374.E
Smirnov test, Kolmogorov-      317.F
Smirnov theorem      250.F
Smirnov, Modest Mikhallovich      326.r
Smirnov, Nikolai Vasil’evich      250.F r
Smirnov, Vladimir Ivanovich      20.r 106.r 216.r 371.F
Smirnov, Yurii Mikhallovich      273.K
Smith conjecture      235.E
Smith convergence, Moore-      87.H
Smith theorem      431.B
Smith, Brian T.      298.r 301.O
Smith, David Eugene      187.r
Smith, Gordon Dennis      304.r
Smith, Guy Watson      19.r
Smith, H.L.      87.H K r
Smith, Henry John Stephen      179.B
Smith, J. M.      263.r
Smith, Kennan Tayler      276.E 338.E
Smith, Paul Althaus      235.E 431.B
Smith, Paul John      151.I
Smithies, Frank      217.r
Smooth (function)      106.K
Smooth (measure for a Riemann metric)      136.G
Smooth (morphism of schemes)      16.F
Smooth (point of a variety)      16.F
Smooth boundary, domain with (in a $C^{\infty}$-manifold)      105.U
Smooth characteristic class of foliations      154.G
Smooth in the sense of A.Zygmund      168.B
Smooth invariant measure      126.J
Smooth manifold      105.D 114.B
Smooth piecewise (curve)      364.A
Smooth structure      114.B
Smooth uniformly (normed linear space)      37.G
Smooth variety      16.F
Smoothing (of a combinatorial manifold)      114.C
Smoothing problem      114.C
Smorodinsky, Meir      136.E
Smullyan, Raymond M.      411.r
Smyth, Brian      275.F 365.H L
Smythe, Robert T.      340.r
Sn      134.J App. Table
Snapper polynomial      16.E
Snapper, Ernst      16.E 200.M
Sneddon, Ian Naismith      389.r
Sneddon, W.J.      336.r
Snell (Snel van Roijen, Snellius), Willebrord      180.A
Snell, James Laurie      260.J
Sobolev inequality, Hardy — Littlewood-      224.E
Sobolev space      168.B
Sobolev — Besov embedding theorem      168.B
Sobolev, Sergei L’vovich      20 46.r 125.A 162 168.B r
Sobolevskii, Pavel Evseevich      251.r 286.r 378.I J
Software      75.C
Sohncke, Leonhard      92.F
Sojourn time density      45.G
Solenoidal (vector field)      442.D
Solid geometry      181
Solid harmonics      393.A
Solid n-sphere      140
Solid sphere      140
Solid sphere topological      140
Solitar, Donald Moiseevitch      161.r
Solitary wave      387.B
Soliton      387.B
Solovay, Robert M.      22.F H F r
Solution (of a functional-differential equation)      163.C
Solution (of a partial differential equation)      320.A
Solution (of a system of differential equations)      313.B
Solution (of a system of linear equations)      269.M
Solution (of a system of partial differential equations)      428.B
Solution (of an inequality)      211.A
Solution (of an ordinary differential equation)      313.A
Solution (of equations of neutral type)      163.H
Solution (of partial differential equations of first order)      App.A Table
Solution (of partial differential equations of second order)      App. A Table
Solution algebraic (of an algebraic equation)      10.D
Solution asymptotic      325.L
Solution basic      255.A
Solution basic feasible      255.A
Solution basic optimal      255.A
Solution Bayes      398.B
Solution Bayes, in the wider sense      398.B
Solution by quadrature      App. A Table
Solution by radicals (of an algebraic equation)      10.D
Solution classical (to Plateau’s problem)      275.C
Solution complete (of partial differential equations)      320.C
Solution curve (of ordinary differential equations)      316.A
Solution Douglas — Rado (to Plateau’s problem)      275.C
Solution d’Alembert      325.D
Solution elementary (of a differential operator)      112.B
Solution elementary (of a linear partial differential operator)      320.H
Solution elementary (of a partial differential operator)      App.A Table
Solution elementary (of partial differential equations of elliptic type)      323.B
Solution equilateral triangle      420.B
Solution feasible (of a linear equation in linear programming)      264.A
Solution formal (for a system of ordinary differential equations)      289.C
Solution fundamental (of a Cauchy problem)      325.D
Solution fundamental (of a differential operator)      112.B
Solution fundamental (of a linear parabolic equation with boundary conditions)      327.F
Solution fundamental (of a linear partial differential operator)      320.H
Solution fundamental (of a partial differential equation of parabolic type)      327.D
Solution fundamental (of a partial differential operator with $C^{\infty}$-coefficients)      189.C
Solution fundamental (of an evolution equation)      189.C
Solution fundamental (of partial differential equations of elliptic type)      323.B
Solution fundamental system of (of a homogeneous linear ordinary differential equation)      252.B
Solution fundamental system of (of a homogeneous system of linear differential equations of first order)      252.H
Solution general (of a differential equation)      313.A
Solution general (of a general partial differential equation)      320.C
Solution general (of a nonhomogeneous linear difference equation)      104.D
Solution general (of a system of differential equations)      313.C
Solution general (of a system of partial differential equations)      428.B
Solution general (of partial differential equations)      320.C
Solution generalized Bayes      398.B
Solution genuine      323.G
Solution half-periodic (of the Hill equation)      268.E
Solution Hill’s method of      268.B
Solution Hopf’s weak      204.C
Solution inner      25.B
Solution Kirchhoff      325.D
Solution maximum      316.E
Solution minimax      398.B
Solution minimum      316.E
Solution Nash bargaining      173.C
Solution numerical (of algebraic equations)      301
Solution numerical (of integral equations)      217.N
Solution numerical (of linear equations)      302
Solution numerical (of ordinary differential equations)      303
Solution numerical (of partial differential equations)      304
Solution of boundary value problems      App. A Table
Solution of the Cauchy problem      325.D
Solution operator      163.E
Solution optimal (of a linear programming problem)      255.A
Solution optimal (of a nonlinear programming problem)      292.A
Solution ordinary (of a differential ideal)      428.E
Solution outer      25.B
Solution particular (for a system of differential equations)      313.C
Solution particular (of a differential equation)      313.A
Solution particular (of partial differential equations)      320.C
Solution pathwise uniqueness of      406.D
Solution periodic (of the Hill equation)      268.E
Solution Perron — Brelot (of the Dirichlet problem)      120.C
Solution Perron — Wiener — Brelot (of the Dirichlet problem)      120.C
Solution Poisson      325.D
Solution primary (of a homogeneous partial differential equation)      320.E
Solution primitive (of a partial differential equation)      320.E
Solution principal      104.B
Solution quasiperiodic (of the Hill equation)      268.B
Solution regular (of a differential ideal)      428.E
Solution singular      App. A Table
Solution singular (df a differential ideal)      428.E
Solution singular (of a general partial differential equation)      320.C
Solution singular (of an ordinary differential equation)      313.A App. Table
Solution singular (of partial differential equations)      320.C
Solution stable (of the Hill equation)      268.E
Solution straight line      420.B
Solution strong (of Navier — Stokes equation)      204.C
Solution strong (of stochastic differential equations)      406.D
Solution system of fundamental (of a system of linear homogeneous equations)      269.M
Solution to the martingale problem      115.C
Solution trivial (of a system of linear homogeneous equations)      269.M
Solution unique strong      406.D
Solution uniqueness theorem of (of systems of linear differential equations of the first order)      316.D G
Solution unstable (of the Hill equation)      268.E
Solution von Neumann — Morgenstern      173.D
Solution weak      204.C 323.G 378.I
Solvability, Cartan’s criterion of      248.F
Solvable (by a Turing machine)      71.B
Solvable (ideal of a Lie algebra)      248.C
Solvable (Lie algebra)      248.C
Solvable (Lie group)      249.D
Solvable algebra      231.A
Solvable algebraic group      13.F
Solvable algebraic group k-      13.F
Solvable by radicals      172.H
Solvable group      190.I
Solvable group $\pi$-      151.F
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте