Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Sequence fundamental (in a uniform space)      436.G
Sequence fundamental (of rational numbers)      294.E
Sequence fundamental (of real numbers)      355.B
Sequence fundamental exact (on cohomology of groups)      200.M
Sequence fundamental, of cross cuts (in a simply connected domain)      333.B
Sequence Gysin exact (of a fiber space)      148.E
Sequence Hodge spectral      16.U
Sequence homology exact (for simplicial complexes)      201.L
Sequence homology exact (of a fiber space)      148.E
Sequence homotopy exact      202.L
Sequence homotopy exact (of a fiber space)      148.D
Sequence homotopy exact (of a triad)      202.M
Sequence homotopy exact (of a triple)      202.L
Sequence independent, of partitions      136.E
Sequence infinite      165.D
Sequence interpolating      43.F
Sequence Jordan — Holder (in a group)      190.G
Sequence linear recurrent      295.A
Sequence Mayer — Vietoris exact      201.C
Sequence minimizing      46.E
Sequence monotone (of real numbers)      87.B
Sequence monotonically decreasing (of real numbers)      87.B
Sequence monotonically increasing (of real numbers)      87.B
Sequence normal (of open coverings)      425.R
Sequence null (in a-adic topology)      284.B
Sequence of Bernoulli trials      396.B
Sequence of factor groups (of a normal chain)      190.G
Sequence of functions      165.B D
Sequence of numbers      165.D
Sequence of points      165.D
Sequence of positive type      192.B
Sequence of sets      165.D
Sequence of Ulm factors (of an Abelian p-group)      2.D
Sequence order-convergent (in a vector lattice)      310.C
Sequence oscillating (of real numbers)      87.D
Sequence pointwise convergent      435.B
Sequence positive definite      192.B
Sequence Puppe exact      202.G
Sequence random      354.E
Sequence rapidly decreasing      168.B
Sequence recurrent, of order r      295.A
Sequence reduced homology exact      201.F
Sequence regular (of Lebesgue measurable sets)      380.D
Sequence regular spectral      200.J
Sequence relative Mayer — Vietoris exact      201.L
Sequence short exact      200.I
Sequence simply convergent      435.B
Sequence slowly increasing      168.B
Sequence spectral      200.J
Sequence spectral (of singular cohomology of a fiber space)      148.E
Sequence standard      400.K
Sequence symbol (in the theory of microdifferential operators)      274.F
Sequence uniformly convergent      435.A
Sequence Wang exact (of a fiber space)      148.E
Sequence(s)      165.D
Sequencing problem, machine      376
Sequential decision function      398.F
Sequential decision problem      398.F
Sequential decision rule      398.F
Sequential probability ratio test      400.L
Sequential sampling inspection      404.C
Sequential space      425.CC
Sequential test      400.L
Sequentially compact (space)      425.S
Seregin, L.V.      115.r
Sergner, J.A.      19.B
Serial correlation coefficient      397.N 421.B
Serial cross correlation coefficient      397.N
Series      379 App. Table
Series $\pi$-(of a group)      151.F
Series absolutely convergent      379.C
Series absolutely convergent double      379.E
Series allied (of a trigonometric series)      159.A
Series alternating      379.C
Series ascending central (of a Lie algebra)      248.C
Series asymptotic      30
Series asymptotic power      30.A
Series binomial      App. A Table
Series binomial coefficient      121.E
Series characteristic (in a group)      190.G
Series commutatively convergent      379.C
Series complementary (of unitary representations of a complex semisimple Lie group)      437.W
Series complementary degenerate (of unitary representations of a complex semisimple Lie group)      437.W
Series composition (in a group)      190.G
Series composition (in a lattice)      243.F
Series composition factor (of a composition series in a group)      190.G
Series conditionally convergent      379.C
Series conditionally convergent double      379.E
Series conjugate (of a trigonometric series)      159.A
Series convergent      379.A
Series convergent double      379.E
Series convergent power      370.B
Series convergent power, ring      370.B
Series degenerate (of unitary representations of a complex semisimple Lie group)      437.W
Series derived (of Lie algebra)      248.C
Series descending central (of a Lie algebra)      248.C
Series Dini      39.D
Series Dirichlet      121
Series Dirichlet, of the type $\{\lambda_n\}$      121.A
Series discrete (of unitary representations of a simple Lie group)      437.X
Series divergent      379.A
Series divergent double      379.E
Series double      379.E
Series Eisenstein      32.C
Series Eisenstein — Poincare      32.F
Series exponential      131.D
Series factorial      104.F 121.E
Series field of formal power, in one variable      370.A
Series finite      379.A App. Table
Series formal power      370.A
Series formal power, field in one variable      370.A
Series formal power, ring      370.A
Series Fourier      159197.C App. Table
Series Fourier (of a distribution)      125.P
Series Fourier (of an almost periodic function)      18.B
Series Fourier cosine      App. A Table
Series Fourier sine      App. A Table
Series Fourier — Bessel      39.D
Series Gauss      206.A
Series generalized Eisenstein      450.T
Series generalized Schlomilch      39.D
Series generalized trigonometric      18.B
Series geometric      379.B App. Table
Series Heine      206.C
Series hypergeometric      206.A
Series infinite      379.A App. Table
Series iterated, by columns (of a double series)      379.E
Series iterated, by rows (of a double series)      379.E
Series Kapteyn      39.D App. Table
Series Lambert      339.C
Series Laurent      339.A
Series logarithmic      131.D
Series lower central (of a group)      190.J
Series majorant      316.G
Series majorant (of a sequence of functions)      435.A
Series Neumann      217.D
Series of nonnegative terms      379.B
Series of positive terms      379.B
Series ordinary Dirichlet      121.A
Series orthogonal (of functions)      317.A
Series oscillating      379.A
Series Poincare      32.B
Series power      21.B 339 370.A App. Table
Series power (in a complete ring)      370.A
Series power, ring      370.A
Series power, with center at the point at infinity      339.A
Series principal (in an $\Omega$-group)      190.G
Series principal (of unitary representations of a complex semisimple Lie group)      258.C 437.W
Series principal (of unitary representations of a real semisimple Lie group)      258.C 437.X
Series principal H-      437.X
Series properly divergent      379.A
Series Puiseux      339.A
Series repeated, by columns (of a double series)      379.E
Series repeated, by rows (of a double series)      379.E
Series ring of convergent power      370.B
Series ring of formal power      370.A
Series ring of power      370.A
Series Schlomilch      39.D App. Table
Series simple      379.E
Series singular      4.D
Series supplementary      258.C
Series Taylor      339.A
Series termwise integrable      216.B
Series theta      348.L
Series theta-Fuchsian, of Poincare      32.B
Series time      397.A 421.A
Series trigonometric      159.A
Series unconditionally convergent      379.C
Series uniformly absolutely convergent      435.A
Series upper central (of a group)      190.J
Serre $\mathscr S$-theory      202.N
Serre conjecture      369.F
Serre duality theorem (on complex manifolds)      72.E
Serre duality theorem (on projective varieties)      16.E
Serre formulas, Frenet- (on curves)      111.D App.A Table
Serre theorem (for ample line bundles)      16.E
Serre, Jean-Pierre      3.N r E T r Q r r K r O M r U r r J R r
Serret, Joseph Alfred      111.D 238.r App. A Table
Serrin, James Burton      275.A D E
Servais, C      297.D
Seshadri, Conjeeveram Srirangachari      16.Y r
Seshu, Sundaram      282.r
Sesquilinear form (on a linear space)      256.Q
Sesquilinear form (on a product of two linear spaces)      256.Q
Sesquilinear form matrix of      256.Q
Sesquilinear form nondegenerate      256.Q
Set $B_n$      22.D
Set $C_n$      22.D
Set $F_{\sigma}$      270.C
Set $G_{\delta}$      270.C
Set $P_n$      22.D
Set $\alpha$-limit      126.D
Set $\Delta$      22.D
Set $\mathfrak B$-measurable      270.C
Set $\mu$-measurable      270.D
Set $\mu$-null      270.D
Set $\omega$-limit      126.D
Set $\Pi_1^1$      122.A
Set $\Pi_n^1$      22.D
Set $\rho$-      308.I
Set $\Sigma_1^1$      22.A
Set $\Sigma_n^1$      22.D
Set (general) recursive      97
Set A-      22.A 409.A
Set absolutely convex (in a linear topological space)      424.E
Set analytic      22.A I
Set analytic (in the theory of analytic spaces)      23.B
Set analytic wave front      274.D
Set analytically thin (in an analytic space)      23.D
Set arbitrary      381.G
Set asymptotic      62.A
Set asymptotic ratio      308.I
Set axiom of power      33.B 381.G
Set Baire      126.H 270.C
Set bargaining      173.D
Set basic (for an Axiom Aflow)      126.J
Set basic (of a structure)      409.B
Set basic open      425.F
Set bifurcation      51.F 418.F
Set border      425.N
Set Borel (in a Euclidean space)      270.C
Set Borel (in a topological space)      270.C
Set Borel in the strict sense      270.C
Set boundary      425.N
Set boundary cluster      62.A
Set bounded (in a locally convex space)      424.F
Set bounded (in a metric space)      273.B
Set bounded (in an affine space)      7.D
Set CA      22.A
Set Cantor      79.D
Set capacity of      260.D
Set catastrophe      51.F
Set category of      52.B
Set chain recurrent      126.E
Set characteristic (of a partial differential operator)      320.B
Set characteristic (of an algebraic family on a generic component)      15.F
Set choice      34.A
Set closed      425.B
Set cluster      62.A
Set coanalytic      22.A
Set compact (in a metric space)      273.F
Set compact (in a topological space)      425.S
Set complementary      381.B
Set complementary analytic      22.A
Set complete      241.B
Set complete orthonormal (of a Hilbert space)      197.C
Set connected      79.A
Set constraint (of a minimization problem)      292.A
Set convex      7.D 89
Set countably equivalent (under a nonsingular bimeasurable transformation)      136.C
Set curvilinear cluster      62.C
Set cylinder      270.H
Set dense      425.N
Set dependent      66.G
Set derived      425.O
Set determining (of a domain in $C^n$)      21.C
Set difference (of blocks)      102.E
Set directed      311.D
Set discrete      425.O
Set disjoint      381.B
Set dominating      186.I
Set empty $(\oslash)$      381.A
Set equipollent      49.A
Set equipotent      49.A
Set externally stable      186.I
Set factor (of a crossed product)      29.D
Set factor (of a projective representation)      362.J
Set factor (of an extension of groups)      190.N
Set family of      165.D 381.B D
Set familyof (indexedbyA)      381.D
Set final (of a correspondence)      358.B
Set final (of a linear operator)      251.E
Set finite      49.F381.A
Set finitely equivalent (under a nonsingular bimeasurable transformation)      136.C
Set first negative prolongational limit      126.D
Set first positive prolongational limit      126.D
Set function      380.A
Set function $\mu$-absolutely continuous additive      380.C
Set function $\mu$-singular additive      380.C
Set function additive      380.C
Set function completely additive      380.C
Set function finitely additive      380.B
Set function monotone decreasing      380.B
Set function monotone increasing      380.B
Set function of bounded variation      380.B
Set function(s)      380
Set function-theoretic null      169.A
Set fundamental (of a transformation group)      122.B
Set fundamental open (of a transformation group)      122.B
Set general Cantor      79.D
Set generalized peak      164.D
Set germ of an analytic      23.B
Set homotopy      202.B
Set idempotent (of a ring)      368.B
Set increasing directed      308.A
Set independent      66.G 186.I
Set index      102.L
Set index (of a family of elements)      381 D
Set index (of a family)      165.D
Set indexing (of a family of elements)      381.D
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте