Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Riemannian space      364.A
Riemannian space irreducible symmetric      App. A Table
Riemannian space locally symmetric      App. A Table
Riemannian submanifold      365
Riemenschneider, Oswald W.      232.r
Riesz (F.) theorem (on $L_p$ functions)      317.B
Riesz (F.) theorem (representation)      197.F
Riesz (F.and M.) theorem      168.C
Riesz (F.and M.) theorem (on bounded holomorphic functions on a disk)      43.D
Riesz convexity theorem      88.C
Riesz decomposition (in a Markov chain)      260.D
Riesz decomposition of a superharmonic or subharmonic function      193.S
Riesz group      36.H
Riesz method of order k, summable by      379.R
Riesz method of summation of the kth order      379.R
Riesz potential      338.B
Riesz space      310.B
Riesz transform      251.O
Riesz — Fischer theorem      168.B 317.A
Riesz — Schauder theorem      68.E
Riesz — Thorin theorem      224.A
Riesz, Frigyes      43.D 68.A E r I F r r B B
Riesz, Marcel      43.D 88.C 121.r 125.A 164.G I
Right A-module      277.D
Right adjoint functor      52.K
Right angle      151.D
Right annihilator (of a subset of an algebra)      29.H
Right Artinian ring      368.F
Right balanced (functor)      200.I
Right circular cone      350.B
Right conoid      111.I
Right continuous (function)      84.B
Right coset (of a subgroup of a group)      190.C
Right coset space (of a topological group)      423.E
Right decomposition, Peirce (in a unitary ring)      368.F
Right derivative      106.A
Right derived functor      200.I
Right differentiable      106.A
Right endpoint (of an interval)      355.C
Right equivalent      51.C
Right exact (functor)      200.I
Right G-set      362.B
Right global dimension (of a ring)      200.K
Right helicoid      111.I
Right ideal (of a ring)      368.F
Right ideal integral      27.A
Right injective resolution (of an A-module)      200.F
Right invariant Haar measure      225.C
Right invariant tensor field (on a Lie group)      249.A
Right inverse (of $df_1(0)$)      286.G
Right inverse element (of an element of a ring)      368.B
Right linear space      256.A
Right majorizing function      316.E
Right Noetherian ring      368.F
Right operation (of a set to another set)      409.A
Right or ideal      27.A
Right order (of a $\partial$-lattice)      27.A
Right parametrix      345.A
Right projective space      343.H
Right quotient space (of a topological group)      423.E
Right regular representation (of a group)      362.B
Right regular representation (of an algebra)      362.E
Right resolution (of an A-module)      200.F
Right satellite      200.I
Right semi-integral      68.N
Right semihereditary ring      200.K
Right shunt      115.B
Right singular point (of a diffusion process)      115.B
Right superior function      316.E
Right translation      249.A 362.B
Right uniformity (of a topological group)      423.G
Right, limit on the      87.F
Right-adjoint (linear mapping)      256.Q
Rigid (characteristic class of a foliation)      154.G
Rigid (isometric immersion)      365.E
Rigid body      271.E
Rigidity (of a sphere)      111.I
Rigidity modulus of      271.G
Rigidity theorem      178.C
Rigidity theorem strong      122.G
Riickert, Walter      23.B
Riley, Robert Freed      235.E
Rim, Dock S.      200.M
Ring adele (of an algebraic number field)      6.C
Ring affine      16.A
Ring anchor      410.B
Ring Artinian      284.A
Ring associated graded      284.D
Ring basic (of a module)      277.D
Ring Boolean      42.C
Ring Burnside      431.F
Ring category of      52.B
Ring category of commutative      52.B
Ring Chow (of a projective variety)      16.R
Ring cobordism      114.H
Ring coefficient (of a semilocal ring)      284.D
Ring coefficient (of an algebra)      29.A
Ring coherent sheaf of      16.E
Ring cohomology      201.I
Ring cohomology, of an Eilenberg — MacLane complex      App. A Table
Ring cohomology, of compact connected Lie groups      App.A Table
Ring commutative      67368.A
Ring complete local      284.D
Ring complete Zariski      284.C
Ring completely integrally closed      67.I
Ring completely primary      368.H
Ring completion, with respect to an ideal      16.X
Ring complex cobordism      114.H
Ring coordinate (of an affine variety)      16.A
Ring correspondence (of a nonsingular curve)      9.H
Ring de Rham cohomology (of a differentiate manifold)      105.R 201.I
Ring differential      113
Ring differential extension      113
Ring discrete valuation      439.E
Ring division      368.B
Ring endomorphism (of a module)      277.B 368.C
Ring endomorphism (of an Abelian variety)      3.C
Ring factor, modulo an ideal      368.F
Ring form      284.D
Ring generalized Boolean      42.C
Ring Gorenstein      200.K
Ring graded      369.B
Ring ground (of a module)      277.D
Ring ground (of an algebra)      29.A
Ring group (of a compact group)      69.A
Ring Hecke      32.D
Ring Hensel      370.C
Ring Henselian      370.C
Ring hereditary      200.K
Ring homogeneous      369.B
Ring homogeneous coordinate      16.A
Ring homomorphism      368.D
Ring integrally closed      67.I
Ring isomorphism      368.D
Ring Krull      67.J
Ring left Artinian      368.F
Ring left hereditary      200.K
Ring left Noetherian      368.F
Ring left semihereditary      200.K
Ring local      284.D
Ring local (of a subvariety)      16.B
Ring locally Macaulay      284.D
Ring Macaulay      284.D
Ring Macaulay local      284.D
Ring Noetherian      284.A
Ring Noetherian local      284.D
Ring Noetherian semilocal      284.D
Ring normal      67.I
Ring normed      36.A
Ring of a valuation      439.B
Ring of convergent power series      370.B
Ring of differential polynomials      113
Ring of endomorphisms (of an Abelian variety)      3.C
Ring of formal power series      370.A
Ring of fractions      67.G
Ring of operators      308.C
Ring of p-adic integers      439.F
Ring of polynomials      337.A 369
Ring of power series      370
Ring of quotients of a ring with respect to a prime ideal      67.G
Ring of quotients of a ring with respect to a subset of the ring      67.G
Ring of scalars (of a module)      277.D
Ring of total quotients      67.G
Ring of valuation vectors      6.C
Ring operations      368.A
Ring polynomial      337.A 369.A
Ring polynomial, in m variables      337.B
Ring power series      370.A
Ring primary      368.H
Ring primitive      368.H
Ring principal ideal      67.K
Ring Pruefer      200.K
Ring pseudogeometric      284.F
Ring quasilocal      284.D
Ring quasisemilocal      284.D
Ring quasisimple      368.E
Ring quotient      368.E
Ring regular      85.B 284.D
Ring regular local      284.D
Ring representation      237.H
Ring representative (of a compact Lie group)      249.U
Ring residue class, modulo an ideal      368.F
Ring right Artinian      368.F
Ring right hereditary      200.K
Ring right Noetherian      368.F
Ring right semihereditary      200.K
Ring semihereditary      200.K
Ring semilocal      284.D
Ring semiprimary      368.H
Ring semiprimitive      368.H
Ring semisimple      368.G
Ring simple      368.G
Ring splitting      29.K
Ring topological      423.P
Ring unitary      368.A 409.C
Ring universally Japanese      284.F
Ring Zariski      284.C
Ring zero      368.A
Ring(s)      368
Ringed space      383.H
Ringed space local      383.H
Ringel, Gerhard      157.E r
Ringrose, John Robert      308.r
Rinnooy Kan, Alexander H.G.      376.r
Rinow, Willi      178.A
Riordan, John      66.r 330.r
Ripple      205.F
Riquier, C.      428.B r
Rishel, Raymond W.      405.r
Risk Bayes      398.B
Risk consumer’s      404.C
Risk function      398.A
Risk posterior      399.F
Risk premium      214.B
Risk producer’s      404.C
Risk theory      214.C
Risk theory classical      214.C
Risk theory collective      214.C
Risk theory individual      214.C
Rissanen, Jorma      86.D
Ritt basis theorem (on differential polynomials)      113
Ritt, Joseph Fels      113.* r
Ritter, Klaus      292.r
Ritz method      46.F 303.I 304.B
Ritz, Walter      46.F 303.I 304.B
Riviere, Nestor Marcelo      224.E
Roache, Patrick John      300.r
Robbin, Joel W.      126.G r
Robbins — Kiefer inequality, Chapman-      399.D
Robbins, Herbert      250.r 399.D
Roberts, Joel L.      16.I
Roberts, John Elias      150.E
Roberts, John Henderson      117.C
Roberts, Richard A.      86.D
Robertson — Walker metrics      359.E
Robertson, Alex P.      424.r
Robertson, Howard Percy      359.E
Robertson, Wendy J.      424.X r
Robin constant      48.B
Robin problem      323.F
Robin, Gustave      48.B 323.F
Robinson, Abraham      118.D 276.D E r D r
Robinson, Derek William      36.K r r
Robinson, G.      301.r
Robinson, Julia Bowman      97.* r
Robinson, R. Clark      77.F 126.H J L r
Robinson, Raphael Mitchel      356.B
Robust and nonparametric method      371
Robust estimation      371.A
Robust method      371.A
Roch, Gustave      9.C F
Roche — Schlomilch      App. A Table
Roche — Schlomilch remainder      App. A Table
Roche, Edouard Albert      App. A Table
Rockafellar, R. Tyrrell      89.r 292.D
Rodin, Burton      367.I r
Rodoskii, Kirill Andreevich      123.E
Rodrigues formula      393.B
Rodrigues, Olinde      393.B
Roepstorff — Araki — Sewell inequality      402.G
Roepstorff — Fannes — Verbeure inequality      402.G
Roepstorff, Gert      402.G
Rogers theorem, Dvoretzky-      443.D
Rogers, Claude Ambrose      22.r 182.D 443.D
Rogers, Hartley, Jr.      22.r 81.D r
Rogers, William H.      371.r
Roggenkamp, Klaus W.      362.r
Rogosinski, Werner Wolfgang      159.H r
Rohrl, Helmut      196 253.D
Rokhlin theorem      114.K
Rokhlin, Vladimir Abramovich      56.H 114.H K H r
Rolfsen, Dale Preston Odin      235.r
Rolle theorem      106.E
Rolle, Michel      106.E
Rolling curve (of a roulette)      93.H
Roltman, A.A.      16.R r
Roman and medieval mathematics      372
Romanov, Vladimir Gabrilovich      218.H
Romberg integration      299.C
Romberg, W.      299.C
Room square      241.D
Root (of a chamber complex)      13.R
Root (of a polynomial)      337.B
Root characteristic (for a linear partial differential equation with variable coefficients)      325.F
Root characteristic (of a linear mapping)      269.L
Root characteristic (of a matrix)      269.F
Root characteristic (of an autonomous linear system)      163.F
Root co-      13.J
Root extraction      10.C
Root imaginary (of an algebraic equation)      10.E
Root k-      13.Q
Root mth      10.C
Root multiple (of an algebraic equation)      10.B
Root negative (of a semisimple Lie algebra)      248.M
Root of a polynomial      337.B
Root of a semisimple algebraic group      13.J
Root of a semisimple Lie algebra      248.K
Root positive (of a semisimple Lie algebra)      248.M
Root primitive, modulo m      297.G
Root primitive, of unity      14.L
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте