Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Principle continuity      21.H
Principle continuity (in potential theory)      338.C
Principle contraction      286.B
Principle correspondence      351.D
Principle Dedekind (in a modular lattice)      243.F
Principle dilated maximum (in potential theory)      338.C
Principle Dirichlet      120.A 323.E
Principle Dirichlet drawer      182.F
Principle domination      338.L
Principle Donsker in variance      250.E
Principle duality (for closed convex cones)      89.F
Principle duality, for ordering      311.A
Principle embedding (in dynamic programming)      127.B
Principle energy      338.D
Principle energy minimum      419.A
Principle enthalpy minimum      419.C
Principle entropy maximum      419.A
Principle equilibrium      338.K
Principle Fermat      180.A 441.C
Principle first maximum (in potential theory)      338.C
Principle Fisher three      102.A
Principle Frostman maximum      338.C
Principle general, of relativity      359.D
Principle Gibbs free energy minimum      419.C
Principle Hamilton      441.B
Principle Hasse      348.G
Principle Helmholtz free energy minimum      419.C
Principle Huygens      325.B 446
Principle Huygens, in the wider sense      325.D
Principle invariance      375.B 400.E
Principle inverse domination      338.L
Principle limiting absorption      375.C
Principle local maximum modulus      164.C
Principle lower envelope      338.M
Principle Maupertuis      180.A
Principle maximal      193.E
Principle maximum (for a holomorphic function)      43.B
Principle maximum (for control theory)      86.F
Principle maximum (for minimal surfaces)      275.B
Principle maximum modulus (for a holomorphic function)      43.B
Principle minimax (for $\lambda_k$)      391.G
Principle minimax (for eigenvalues of a compact operator)      68.H
Principle minimax (for statistical decision problem)      398.B
Principle minimum (for $\lambda$)      391.D
Principle minimum (for $\lambda_k$)      391.G
Principle of condensation of singularities      37.H
Principle of conditionality      401.C
Principle of counting constants      16.S
Principle of depending choice (DC)      33.F
Principle of duality (in projective geometry)      343.B
Principle of equal weight      402.E
Principle of equivalence (in insurance mathematics)      214.A 359.D
Principle of invariance of speed of light      359.B
Principle of least action      441.B
Principle of linearized stability      286.S
Principle of localization (on convergence tests of Fourier series)      159.B
Principle of nested intervals (for real numbers)      87.C 355.B
Principle of reflection      74.E
Principle of sufficiency      401.C
Principle of superposition      252.B 322.C
Principle ofoptimality      127.A
Principle Oka      21.K 147.O
Principle Pauli      351.H
Principle quasicontinuity (in potential theory)      338.I
Principle Rayleigh      68.H
Principle reflection      45.E
Principle Schwarz, of reflection      198.G
Principle separation      405.C
Principle special, of relativity      359
Principle stochastic maximum      405.D
Principle stored program      75.B
Principle Strassen invariance      250.E
Principle sweeping-out      338.L
Principle Ugaheri maximum      338.C
Principle uniqueness (in potential theory)      338.M
Principle upper boundedness (in potential theory)      338.C
Principle variational      441
Principle variational (in statistical mechanics)      340.B 402.G
Principle variational (in the theory of elasticity)      271.G
Principle variational, for topological pressure      136.H
Principle variational, with relaxed continuity requirement      271.G
Principle(s) argument      198.F
Pringsheim theorem      58.E
Pringsheim, Alfred      58.E 83.E
Prior density      401.B
Prior distribution      401.B 403.G
Probabilistic model      397.P
probability      342
Probability a posteriori      342.F
Probability a priori      342.F
Probability additivity of      342.B
Probability amplitude      351.D
Probability binomial, paper      19.B
Probability conditional      342.E
Probability continuous in      407.A
Probability converge in      342.D
Probability converge with      13 42.D
Probability critical percolation      340.D
probability density      341.D
Probability distribution (of random variables)      342.C
Probability distribution (one-dimensional, of random variable)      342.C
Probability distribution conditional      342.E
Probability distribution n-dimensional      342.C
Probability distribution(s)      342.B App. Table
Probability error      213.D
Probability event with      13 42.B
Probability extinction      44.B
Probability generating function      341.F 397.G
Probability geometric      218.A
Probability hitting, for single points      5.G
Probability integral      App. A Table
Probability measure      341 342.B
Probability objective      401.B
Probability of an event      342.B
Probability of loss      307.C
Probability paper      19.F
Probability paper binomial      19.B
Probability ratio test, sequential      400.L
Probability regular conditional      342.E
Probability ruin      214.C
Probability space      342.B
Probability standard transition      260.F
Probability subjective      401.B
Probability that event e occurs      342.B
Probability theory of      342.A
Probability transition      260.A 261.A 351.B
Probable cause, most      401.E
Probable value, most      401.E
Problem 0-1 integer programming      215.A
Problem abstract Cauchy      286.X
Problem acoustjc      325.L
Problem adjoint boundary value      315.B
Problem all-integer programming      215.A
Problem Appolonius (in geometric construction)      179.A
Problem Behrens — Fisher      400.G
Problem Bernshtein, generalized      275.F
Problem boundary value (of ordinary differential equations)      303.H 315.A
Problem Burnside (in group theory)      161.C
Problem Cauchy (for ordinary differential equations)      316.A
Problem Cauchy (for partial differential equations)      320.B 321.A 325.B
Problem class field tower      59.F
Problem combinatorial      App. A Table
Problem combinatorial triangulation      65.C
Problem concave programming      292.A
Problem conditional, in the calculus of variations      46.A
Problem connection      253.A
Problem construction      59.F
Problem convex programming      292.A
Problem corona      43.G
Problem correctly posed (for partial differential equations)      322.A
Problem Cousin, first      21.K
Problem Cousin, second      21.K
Problem Cramer — Castillon (in geometric construction)      179.A
Problem critical inclination      55.C
Problem decision      71.B 97 186.J
Problem Delos (in geometric construction)      179.A
Problem Dido      228.A
Problem differentiable pinching      178.E
Problem Dirichlet      120 193.F 323.C
Problem Dirichlet divisor      242.A
Problem Dirichlet, with obstracte      440.B
Problem du Bois Reymond      159.H
Problem dual      255.B 349.B
Problem eigenvalue      390.A
Problem exterior (Dirichlet problem)      120.A
Problem first boundary value      193.F 323.C
Problem flow-shop scheduling      376
Problem four-color      157
Problem Gauss circle      242.A
Problem Gauss variational      338.J
Problem general boundary value      323.H
Problem generalized eigenvalue      298.G
Problem generalized isoperimetric      46.A 228.A
Problem generalized Pfaff      428.B
Problem Geocze      246.D
Problem geometric construction      179.A
Problem Goldbach      4.C
Problem group-minimization      215.C
Problem Hamburger moment      240.K
Problem Hausdorff moment      240.K
Problem Hersch      391.E
Problem Hilbert (in calculus of variations)      46.A
Problem Hilbert fifth      423.N
Problem homeomorphism      425.G
Problem homogeneous boundary value (of ordinary differential equations)      315.B
Problem Hukuhara      315.C
Problem impossible construction      179.A
Problem inconsistent (of geometric construction)      179.A
Problem inhomogeneous boundary value (of ordinary differential equations)      315.B
Problem initial value (for functional differential equations)      163.D
Problem initial value (for partial differential equations)      321.A
Problem initial value (of ordinary differential equations)      313.C 316.A
Problem initial value, for a hyperbolic partial differential equation      App. A Table
Problem interior (Dirichlet problem)      120.A
Problem interpolation      43.F
Problem invariant measure      136.C
Problem inverse (in potential scattering)      375.G
Problem isomorphism (for graphs)      186.J
Problem isomorphism (for integral group algebra)      362.K
Problem isoperimetric      111.E 228.A
Problem Jacobi inverse      3.L
Problem job-shop scheduling problem      376
Problem k-sample      371.D
Problem Lagrange (in calculus of variations)      46.A
Problem LBA      31.D
Problem Levi      21.I
Problem linear least squares      302.E
Problem linear programming      255.A
Problem local (on the solutions of differential equations)      289.A
Problem machine scheduling      376
Problem machine sequencing      376
Problem Malfatti (in geometric construction)      179.A
Problem many-body      402.F 420.A
Problem martingale      115.C 261.C 406.A
Problem maximum flow      281.C
Problem minimum-cost flow      281.C
Problem mixed integer programming      215.A
Problem multicommodity flow      281.C
Problem multiprocessor scheduling      376
Problem n-body      420.A
Problem n-decision      398.A
Problem network-flow      281 282.B
Problem Neumann (for harmonic functions)      193.F
Problem Neumann (for partial differential equations of elliptic type)      323.F
Problem nonlinear      291
Problem normal Moore space      425.AA
Problem of identification (in econometrics)      128.C
Problem of satisfiability (of a proposition)      97
Problem of specification      397.P
Problem of universal validity of a proposition      97
Problem optimal regulator      86.F
Problem penalized      440.B
Problem Pfaff      428.A
Problem placement      235.A
Problem Plateau      334.A
Problem possible construction      179.A
Problem primal      255.B
Problem primary      255.B
Problem properly posed      322.A
Problem pure integer programming      215.A
Problem quadratic programming      292.A 349.A
Problem random walk      260.A
Problem representation (on surface)      246.I
Problem restricted Burnside (in group theory)      161.C
Problem restricted three-body      420.F
Problem Riemann      253.D
Problem Riemann — Hilbert (for integral equations)      217.J
Problem Riemann — Hilbert (for ordinary differential equations)      253.D
Problem Robin      323.F
Problem Schoenflies      65.G
Problem second boundary value (for harmonic functions)      193.F
Problem second boundary value (for partial differential equations of elliptic type)      323.F
Problem second Cousin      21.K
Problem self-adjoint boundary value      315.B
Problem sequential decision      398.F
Problem shortest path      281.C
Problem single-commodity flow      281
Problem singular initial value (for partial differential equations of mixed type)      326.C
Problem smoothing      114.C
Problem special isoperimetric      228.A
Problem statistical decision      398.A
Problem Steiner (in geometric construction)      179.A
Problem Stieltjes moment      240.K
Problem Sturm — Liouville      315.B
Problem third boundary value (for harmonic functions)      193.F
Problem third boundary value (for partial differential equations of elliptic type)      323.F
Problem three big      187
Problem three-body      420.A
Problem Thues (general)      31.B
Problem time optimal control      86.F
Problem transformation (in a finitely presented group)      161.B
Problem transient      322.D
Problem transportation      255.C
Problem transportation, on a network      255.C
Problem Tricomi      326.C
Problem two-body      55.A
Problem two-point boundary value (of ordinary differential equations)      315.A
Problem two-terminal      281
Problem type (for Riemann surfaces)      367.D
Problem Waring      4.E
Problem weak form of the boundary value      304.B
Problem well-posed (in general case)      322.A
Problem word (in a finitely presented group)      161.B
Problem(s) Abel      217.L
Procedure classification      280.I
Procedure exploratory      397.Q
Procedure Lyapunov — Schmidt      286.V
Procedure random sampling      373.A
Procedure sampling      373.A
Procedure shortest-path      281.C
Procedure statistical decision      398.A
Process $\sigma$-(of a complex manifold)      72.H
Process ( = stochastic process)      407.A
Process (in catastrophe theory)      51.F
Process (on a measure space)      136.E
Process additive      5342.A
Process age-dependent branching      44.E
Process asymmetric Cauchy      5.F
Process autoregressive      421.D
Process autoregressive integrated moving average      421.G
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте