|
 |
Авторизация |
|
 |
Поиск по указателям |
|
 |
|
 |
|
 |
 |
|
 |
|
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 |
|
 |
Предметный указатель |
Real quadratic field 347.A
Real quadratic form 348.A C
Real representation (of a Lie group) 249.O
Real root (of an algebraic equation) 10.E
Real simple Lie algebra classical compact 248.T
Real simple Lie algebra exceptional compact 248.T
Real spectral measure 390.D
Real Stiefel manifold of k-frames 199.B
Real Stiefel manifold of orthogonal k-frame 199.B
Real submanifold, totally 365.M
Real topological vector space 424.A
Real variable 165.C
Real-compact space 425.BB
Real-time (computation) 19.E
Real-valued functions 165.B
Real-valued measurable (cardinal) 33.F
Realizable (by a submanifold) 114.G
Realizable (for a linear representation) 362.F
Realization (of a linear time-varying system) 86.D
Realization (of an s.s.complex) 70.E
Realization (of an s.s.mapping) 70.E
Realization minimal 86.D
Realization theorem (of a homotopy group) 202.N
Realization theory 86.D
Rearrangement 168.B
Rearrangement invariant 168.B
Rebbi, Claudio 80.r
Reciprocal equation 10.C
Reciprocal linear representation (of an algebra) 362.C
Reciprocal network 282.C
Reciprocal permutation representation (of a group) 362.B
Reciprocal spiral 93.H
Reciprocity Artin’s general law of 59.C
Reciprocity complementary law of 14.O
Reciprocity Fourier 160.C
Reciprocity general law of 14.O
Reciprocity law 297.I
Reciprocity law explicit (for Hilbert norm-residue symbol) 14.R
Reciprocity law for Dedekind sums 328
Reciprocity law Gel’fand — Pyatetskii — Shapiro (on unitary representation) 437.DD
Reciprocity law of quadratic, of Jacobi symbol 297.I
Reciprocity law of quadratic, of Legendre symbol 297.I
Reciprocity law Shafarevich 257.H
Reciprocity of annihilators (in topoiogical Abelian groups) 422.E
Reciprocity relations, Onsager’s 402.K
Reckhow, Robert A. 71.r
Record 96.B
rectangle 140
Rectangle latin 241.E
Rectangular coordinates (in a Euclidean space) 90.B
Rectangular distribution App. A Table
Rectangular hyperbola 78.E
Rectangular hyperbolic coordinates 90.C
Rectangular matrix 269.A
Rectangular parallelepiped 140
Rectifiable (current) 275.G
Rectifiable (curve) 93.F 246.A
Rectifiable locally 143.A 246.A
Rectifying plane 111.F
Rectifying surface 111.F
Rectilinear complex 70.B
Recurrence formulas for indefinite integrals App. A Table
Recurrence theorem 136.A C
Recurrence time 260.C
Recurrence time mean 260.C
Recurrent (Levy process) 5.G
Recurrent (Markov chain) 260.B
Recurrent (Markov process) 261.B
Recurrent (nonsingular measurable transformation) 136.C
Recurrent (point of a dynamical system) 126.E
Recurrent chain 260.B
Recurrent event 250.D 260.C
Recurrent event delayed 260.C
Recurrent infinitely (measurable transformation) 136.C
Recurrent linear (sequence) 295.A
Recurrent non- (Markov chain) 260.B
Recurrent null (point) 260.B
Recurrent point (of a Markov chain) 260.B
Recurrent point (of a Markov process) 261.B
Recurrent positive (ergodic class) 260.B
Recurrent positive (point) 260.B
Recurrent regionally (flow) 126.E
Recurrent sequence of order r 295.A
Recurrent set 260.E
Recurrent set chain 126.E
Recurrent strongly (measurable transformation) 136.C
Recursive function general 356.C F
Recursive function partial 356.E F
Recursive function primitive 356.A B F
Recursive function uniformly primitive 356.B
Recursive function(s) 356
Recursive predicate general 356.C
Recursive predicate primitive 356.B
Recursive set 97 356.D
Recursive set general 97
Recursively (define a partial recursive function) 356.E
Recursively enumerable predicate 356.D
Recursively enumerable set 356.D
Recursively uniformly in 356.E
Reduced (a closed linear subspace) 251.L
Reduced (latin square) 241.A
Reduced (scheme) 16.D
Reduced Abelian group 2.D
Reduced algebra 231.B
Reduced basis (of a lattice) 92.C
Reduced bundle (of a principal G-bundle) 147.J
Reduced character (of an algebra) 362.E
Reduced Clifford group 61.D
Reduced cone (of a topological space) 202.F
Reduced dual 437.L
Reduced extremal distance 143.B
Reduced form (of a linear structural equation system) 128.C
Reduced homology exact sequence 201.F
Reduced homology group 201.E
Reduced join (of homotopy classes) 202.Q
Reduced join (of mappings) 202.F
Reduced join (of topological spaces) 202.F
Reduced link polynomial 235.D
Reduced mapping cone 202.F
Reduced norm (of an algebra) 362.E
Reduced orthogonal group 61.D
Reduced product space 202.Q
Reduced quadratic form 348.I
Reduced representation (of an algebra) 362.E
Reduced residue system modulo m 291.G
Reduced square operation, Steenrod 64.B
Reduced square, Steenrod 64.B
Reduced suspension (of a topological space) 202.F
Reduced suspension n-fold 202.F
Reduced trace (of an algebra) 362.E
Reduced von Neumann algebra 308.C
Reducibility, axiom of 156.B 411.K
Reducible (algebraic equation) 10.B
Reducible (algebraic variety) 16.A
Reducible (continuous geometry) 85.A
Reducible (fiber bundle) 147.J
Reducible (germ of an analytic set) 23.B
Reducible (in four color problem) 157.D
Reducible (linear system in control theory) 86.C
Reducible (linear system) 16.N
Reducible (polynomial) 337.F
Reducible (positive matrix) 269.N
Reducible (representation) 362.C
Reducible (Riemannian manifold) 364.E
Reducible completely (A-module) 277.H
Reducible completely (group) 190.L
Reducible completely (representation) 362.C
Reductio ad absurdum 156.C 411.I
Reduction d’Alembert method of, of order 252.F
Reduction formula (of a surface) 110.A
| Reduction good (of an Abelian variety) 3.N
Reduction modulo (of a representation) 277.L
Reduction modulo m (of a linear representation) 362.F
Reduction potential good (of an Abelian variety) 3.N
Reduction potential stable (of an Abelian variety) 3.N
Reduction stable (of a curve) 9.K
Reduction stable (of an AbeHan variety) 3.N
Reduction theorem, cup product (on cohomology or homology of groups) 200.M
Reduction theory, Minkowski (on fundamental regions) 122.E
Reductive (algebraic group) 13.I
Reductive (homogeneous space) 199.A
Reductive (Lie algebra) 248.G
Reductive action 226.B
Reductive action defined by a rational representation 226.B
Reductive action geometrically 226.B
Reductive action linearly 226.B
Reductive action semi- 226.B
Reductive stabilizer 199.A
Ree group 151.I
Ree type group of 151.J
Ree type group of Janko- 151.J
Ree, Rim Hak 151.I J Table
Reeb component 154.B
Reeb foliation 154.B
Reeb stability theorems 154.D
Reeb, Georges 90.r 154.A B D
Reed, George Michael 273.K
Reed, L.J. 263.A
Reed, Michael 331.r 375.r 390.r
Reed, Myril Baird 282.r
Reeh — Schlieder theorem 150.E
Reeh, Helmut Rudolf 150.E
Rees lemma, Artin- 284.A
Rees, David 67.I 284.A
Reference edge 281.C
Refinement - (of a covering) 425.R
Refinement (of a covering) 425.R
Refinement (of a descending chain in a lattice) 243.F
Refinement (of a normal chain in a group) 190.G
Refinement barycentric 425.R
Refinement cushioned 425.X
Refinement star (of a covering) 425.R
Reflected wave 325.L
Reflecting barrier 115.B C
Reflection (associated with ) 13.R
Reflection (of a principal space) 139.B
Reflection coefficient 387.D
Reflection glide 92.E
Reflection points (with respect to a circle) 74.E
Reflection positivity 150.F
Reflection principle 45.E
Reflection Schwartz’s principle of 74.E 198.G
Reflection space 359
Reflection theorem of quasiconformal 352.C
Reflectionless potential 387.D
Reflexive (locally convex space) 424.O
Reflexive (relation) 358.A
Reflexive Banach space 37.G
Reflexive law (for an equivalence relation) 135.A
Reflexive law (on ordering) 311.A
Refraction, atmospheric 392
Regge behavior 386.C
Regge poles 132.C 386.C
Regge, Tullio 132.C 146.A C
Regime, local 51.B
Regiomontanus 360 432.C
Region 79.A
Region acceptance 400.A
Region confidence 399.Q
Region confidence, uniformly most powerful 399.Q
Region confidence, uniformly most powerful unbiased 399.Q
Region critical 400.A
Region Dirichlet 234.C
Region estimation 399.Q
Region feasible 264.B 292.A
Region Ford fundamental 234.C
Region fundamental (of a discrete transformation group) 122.B
Region invariance of a confidence 399.Q
Region of absolute stability (of the Runge — Kutta (P,p) method) 303.G
Region of discontinuity 234.A
Region of relative stability 303.G
Region star 339.D
Region tolerance 399.R
Region unbiased confidence 399.Q
Regionally recurrent (flow) 126.E
Regionally recurrent on an invariant set 126.E
Regression analysis 403.D
Regression coefficient 397.H J
Regression function 397.I
Regression function linear 397.H 403.D
Regression hyperplane 403.D
Regression line 403.D
Regression, line of 111.F I
Regula Falsi 301.C
Regular (almost contact manifold) 110.E
Regular (almost periodic system) 290.B
Regular (at a subvariety) 16.B
Regular (boundary point) 120.D
Regular (cell complex) 70.D
Regular (closed set) 125.J
Regular (coherent -module) 274.G
Regular (differential form on an algebraic variety) 16.O
Regular (Dirichlet form) 261.C
Regular (element of a connected Lie group) 249.P
Regular (element of a real Lie algebra) 248.B
Regular (estimator) 399.N
Regular (Green line) 193.J
Regular (kernel) 125.L
Regular (left ideal of a Banach algebra) 36.D
Regular (ordinal number) 312.E
Regular (permutation group) 151.H
Regular (point for an additive process) 5.G
Regular (point of a flow) 126.D
Regular (point of an analytic set) 23.B 45.D
Regular (point with respect to an analytic set) 21.M
Regular (point with respect to the Dirichlet problem) 207.B
Regular (prime number) 14.L
Regular (sampling procedure) 373.A
Regular (spectral sequence) 200.J
Regular (submartingale) 262.D
Regular affine transformation 7.E
Regular along a subvariety (for a rational mapping) 16.I
Regular at the point at infinity (for a harmonic function) 193.B
Regular Banach space 37.G
Regular boundary (of a diffusion process) 115.B
Regular boundary domain with (in a -manifold) 105.U
Regular chain (of integral elements) 428.E
Regular conditional probability 342.E
Regular cone 384.A
Regular cone self-dual 384.E
Regular covering (space) 91.A
Regular element (of a ring) 368.B
Regular element p- (of a finite group) 362.I
Regular embedding 105.K
Regular extension (of a field) 149.K
Regular factorization 251.N
Regular first integral 126.H
Regular form 16.O
Regular function at a subvariety 16.B
Regular function on an open set (of a variety) 16.B
Regular function sheaf of germs of 16.B
Regular function(s) 198.A
Regular grammar 31.D
Regular graph 186.C
Regular homogeneously 275.C
Regular integral element 191.I 428.E
Regular integral manifold (of a differential ideal) 428.E
Regular knot projection 235.A
Regular local equation (at an integral point) 428.E
Regular local ring 284.D
|
|
 |
Реклама |
 |
|
|