Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Spherical (space form)      412.H
Spherical astronomy      392
Spherical Bessel function      39.B
Spherical coordinates      90.C App. Table
Spherical derivative (for an analytic or meromorphic function)      435.E
Spherical excess      432.B
Spherical Fourier transform      437.Z
Spherical function (on a homogeneous space)      437.X
Spherical function Laplace      393.A
Spherical function zonal (on a homogeneous space)      437.Y
Spherical function(s)      393
Spherical G-fiber homotopy type      431.F
Spherical geometry      285.D
Spherical harmonic function      193.C
Spherical harmonics, biaxial      393.D
Spherical indicatrix (of a space curve)      111.F
Spherical modification      114.F
Spherical representation of a differentiable manifold      111.G
Spherical representation of a space curve      111.F
Spherical representation of a unimodular locally compact group      437.Z
Spherical space      285.D
Spherical triangle      432.B App. Table
Spherical trigonometry      432.B
Spherical type      13.R
Spherical wave      446
Spheroidal coordinates      133.D App. Table
Spheroidal wave function      133.E
Spin      132.A 258.A 415.G
Spin and statistics, connection of      132.A 150.D
Spin ball      351.L
Spin bundle      237.F
Spin continuous      258.A
Spin mapping (map)      237.G
Spin matrix, Pauli      258.A 415.G
Spin representation (of SO(n))      60.J
Spin representation (of Spin(n, C))      61.E
Spin representation even half-      61.E
Spin representation half-      61.E
Spin representation odd half-      61.E
Spin systems, lattice      402.G
Spin-flip model      340.C
Spin-structure      237.F 431.D
Spinc bundle      237.F
Spindler, Heinz      16.r
Spinor contravariant      258.A
Spinor covariant      258.A
Spinor dotted      258.B
Spinor even half-      61.E
Spinor group      60.I61.D
Spinor group complex      61.E
Spinor mixed, of rank (k, n)      258.A
Spinor odd half-      61.E
Spinor representation (of rank k)      258.A
Spinor undotted      258.B
Spinor(s)      61.E
Spinorial norm      61.D
Spiral      93.H
Spiral Archimedes      93.H
Spiral Bernoulli      93.H
Spiral Cornu      93.H
Spiral equiangular      93.H
Spiral hyperbolic      93.H
Spiral logarithmic      93.H
Spiral reciprocal      93.H
Spitzer, Frank Ludwig      44.C 250.r 260.E J
Spivak normal fiber space      114.J
Spivak, Michael D.      114.J 191.r 365.r
SPLINE      223.F
Spline interpolation      223.F
Spline natural      223.F
Split ((B,N)-pair)      151.J
Split (cocycle in an extension)      257.E
Split (exact sequence)      277.K
Split extension (of a group)      190.N
Split k- (algebraic group)      13.N
Split K- (algebraic torus)      13.D
Split k-quasi-(algebraic group)      13.O
Split maximal k, torus      13.Q
Split torus, maximal k-      13.Q
Splitting field for an algebra      362.F
Splitting field for an algebraic torus      13.D
Splitting field minimal (of a polynomial)      149.G
Splitting field of a polynomial      149.G
Splitting ring      29.K
Splitting, Heegaard      65.C
Spot prime      439.H
Sprindzhuk, Vladimir Gennadievich      118.D 430.C
Springer, George      367.r
Springer, Tonny Albert      13.A I O P r
Spur      269.F
Square integrable      168.B
Square integrable unitary representation      437.M
Square latin      241
Square least, approximation      336.D
Square matrix      269.A
Square matrix of the sum of, between classes      280.B
Square matrix of the sum of, within classes      280.B
Square method of least      303.I
Square middle-, method      354.B
Square net      304.E
Square numbers      4.D
Square Room      241.D
Square Shrikhande      102.K
Square Youden      102.K
Square Youden, design      102.K
Square(s) Euler      241.B
Square-free integer      347.H
Srinivasan, B.      App. B Table
Srinivasan, T.P.      164.G
Srivastava, Muni Shanker      280.r
Stability      286.S 303.E 394
Stability $A(\alpha)$-      303.G
Stability $A_0$-      303.G
Stability A-      303.G
Stability absolute      303.G
Stability conjecture      126J
Stability exchange of      286.T
Stability group      362.B
Stability interval of absolute      303.G
Stability interval of relative      303.G
Stability orbital (of a solution of a differential equation)      394.D
Stability principle oflinearized      286.S
Stability region of absolute (of the Runge-Kutta (P, p) method)      303.G
Stability region of relative      303.G
Stability relative      303.G
Stability stiff-      303.G
Stability structural      290.A
Stability structural, theorem      126.J
Stability subgroup (of a topological group)      431.A
Stability theorem $\Omega$-      126.J
Stability theorem structural      126.J
Stabilizer (in a permutation group)      151.H
Stabilizer (in a topological transformation group)      431.A
Stabilizer (in an operation of a group)      362.B
Stabilizer reductive      199.A
Stable      394.A
Stable $C^r$-structurally      126.H
Stable $C^r-\Omega-$      126.H
Stable (coherent sheaf on a projective variety)      241.Y
Stable (compact leaf)      154.D
Stable (discretization, initial value problems)      304.D
Stable (equilibrium solution)      286.S
Stable (initial value problem)      304.F
Stable (invariant set)      126.F
Stable (linear function)      163.H
Stable (manifold)      126.G
Stable (minimal submanifold)      275.B
Stable (static model in catastrophe theory)      51.E
Stable absolutely      303.G
Stable asymptotically      126.F 286.S 394.B
Stable cohomology operation      64.B
Stable conditionally      394.D
Stable curve      9.K
Stable distribution      341.G
Stable distribution (of Thom spectrum)      114.G
Stable distribution of classical groups      202.V
Stable distribution of k-stem      202.U
Stable distribution quasi-      341.G
Stable distribution semi-      341.G
Stable distribution stable homotopy group      202.T App. Table
Stable exponentially      163.G 394.B
Stable externally, set      186.I
Stable globally asymptotically      126.F
Stable in both directions (Lyapunov stable)      394.A
Stable internally, set      186.I
Stable Lagrange      126.E
Stable Lyapunov      126.F
Stable Lyapunov, in the positive or negative direction      394.A
Stable manifold      126.G J
Stable negatively Lagrange      126.E
Stable negatively Poisson      126.E
Stable one-side, for exponent $\frac 1 2$      App. A Table
Stable orbitally      126.F
Stable point      16.W
Stable Poisson      126.E
Stable positively Lagrange      126.E
Stable positively Poisson      126.E
Stable primary cohomology operation      64.C
Stable process      5.F
Stable process exponent of      5.F
Stable process one-sided, of the exponent a      5.F
Stable process strictly      5.F
Stable process symmetric      5.F
Stable range (of embeddings)      114.D
Stable reduction (of a curve)      9.K
Stable reduction (of an Abelian variety)      3.N
Stable reduction potential (of an Abelian variety)      3.N
Stable reduction theorem      3.N 9.K
Stable relatively      303.G
Stable secondary cohomology operation      64.C
Stable set      173.D
Stable set externally      186.I
Stable set internally      186.I
Stable solution (of the Hill equation)      268.E
Stable state      260.F 394.A 404.A
Stable uniformly      394.B
Stable uniformly asymptotically      163.G 394.B
Stable uniformly Lyapunov      126.F
Stable vector bundle (algebraic)      16.Y
Stable vector bundle (topological)      237.B
Stably almost complex manifold      114.H
Stably equivalent (vector bundles)      237.B
Stably fiber homotopy equivalent      237.I
Stably parallelizable (manifold)      114.I
STACK      96.E
Stage method, (P+ 1)-      303.D
Stalk (of a sheaf over a point)      16.AA 383.B
Stallings, John Robert, Jr.      65.A C E F
Stampacchia, Guido      440.r
Stanasila, Octavian      23.r
Stancu-Minasian, I.M.      408.r
Standard (in nonstandard analysis)      293.B
Standard (transition probability)      260.F
Standard Borel space      270.C
Standard complex (of a Lie algebra)      200.O
Standard defining function      125.Z
Standard deviation (characteristics of the distribution)      397.C
Standard deviation (of a probability distribution)      341.B
Standard deviation (of a random variable)      342.C
Standard deviation population      396.C
Standard deviation sample      396.C
Standard form      241.A
Standard form (of a difference equation)      104.C
Standard form Legendre — Jacobi (of an elliptic integral)      134.A App.A Table
Standard form of the equation (of a conic section)      78.C
Standard Gaussian distribution      176.A
Standard Kahler metric (of a complex projective space)      232.D
Standard measurable space      270.D
Standard normal distribution      341.D
Standard parabolic/c-subgroup      13.Q
Standard part (in nonstandard analysis)      293.D
Standard q-simpiex      201.E
Standard random walk      260.A
Standard resolution (of Z)      200.M
Standard sequence      400.K
Standard set      22.I
Standard vector space (in a complex)      13.R
Standard vector space (in a Euclidean complex)      70.B
Standard vector space (in a projective space)      343.B
Standard vector space (in a simplicial complex)      70.C
Standard vector space (of a subset defined by a covering)      425.R
Standard vector space (of an affine space)      7.A
Standard vector space open      70.B C
Stanley, Harry Eugene      402.r
Stanley, Richard Peter      16.Z
Stapp, Henry Pierce      146.C 274.D I
Star body, bounded      182.C
Star convergence      87.K
Star convergence (o)-      87.L
Star convergence relative uniform      310.F
Star refinement (of a covering)      425.R
Star region      339.D
Star topology, weak (of a normed linear space)      37.E 424.H
Star-finite (covering of a set)      425.R
Star-finite property      425.S
Stark, Harold Mead      83.r 118.D 182.G 347.E 450.E
Starmer inequality, Powers-      212.B
Start node      281.D
Starting values (in a multistep method)      303.E
Stasheff, James Dillon      56.r 201.r
State (in Ising model)      340.B
State (in quantum mechanics)      351.B
State bound      351.D
State ceiling      402.G
State completeness of the scattering      150.D
State equation of      419.A
State equilibrium      136.H 340.B 419.A
State estimator      86.E
State even      415.H
State fictitious      260.F
State final      31.B
State Gibbs      340.B
State ground      402.G
State in-      150.D 386.A
State initial      31.B
State instantaneous      260.F 261.B
State internal      31.B
State odd      415.H
State of statistical control      404.A
State out-      150.D 386.A
State scattering      395.B
State space      126.B
State space (in catastrophe theory)      51.B
State space (of a dynamical system)      126.B
State space (of a Markov process)      261.B
State space (of a stochastic process)      407.B
State stable      260.F 394.A 404.A
State stationary      340.C 351.D
State sum over      402.D
State unstable      394.A
State variable      127.A
State(s) (of a C*-algebra)      308.D
State-space approach      86.A
static      51.B
Static model (in catastrophe theory)      51.B
Stationary capacity      213.F
Stationary curve (of a variation problem)      46.B
Stationary curve (of the Euler — Lagrange differential equation)      324.E
Stationary function      46.B
Stationary iterative process, linear      302.C
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте