Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Set infinite      49.F 381.A
Set information      173.B
Set initial (of a correspondence)      358.B
Set initial (of a linear operator)      251.E
Set interior cluster      62.A
Set internally stable      186.I
Set interpolating (for a function algebra)      164.D
Set Kronecker      192.R
Set lattice of      243.E
Set lattice-ordered      243.A
Set Lebesgue measurable      270.G
Set Lebesgue measurable (of $\mathbf R^n$)      270.G
Set level      279.D
Set limit      234.A
Set locally closed      425.J
Set M-      159.J
Set meager      425.N
Set minimal      126.E
Set n-cylinder      270.H
Set nilpotent (of a ring)      368.B
Set nodal      391.H
Set nonmeager      425.N
Set nonsaddle      120.E
Set nonwandering      126.E
Set nowhere dense      425.N
Set null $(\oslash)$      381.A
Set null (in a measure space)      270.D 310.I
Set null, of class JVS      169.E
Set of analyticity      192.N
Set of antisymmetry      164.E
Set of degeneracy (of a holomorphic mapping between analytic spaces)      23.C
Set of multiplicity      159.J
Set of points of indeterminacy (of a proper meromorphic mapping)      23.D
Set of quasi-analytic functions      58.F
Set of the first category      425.N
Set of the first kind      319.B
Set of the second category      425.N
Set of the second kind      319.B
Set of uniqueness      159.J
Set open      425.B
Set ordinate      221.E
Set orthogonal (of a Hilbert space)      197.C
Set orthogonal (of a ring)      368.B
Set orthogonal (of functions)      317.A
Set orthonormal (of a Hilbert space)      197.C
Set orthonormal (of functions)      317.A
Set P-convex (for a differential operator)      112.C
Set peak      164.D
Set perfect      425.O
Set point      381.B
Set polar (in potential theory)      261.D 338.H
Set power      381.B
Set precompact (in a metric space)      273.B
Set principal analytic      23.B
Set projective, of class n      22.D
Set purely d-dimensional analytic      23.B
Set quotient (with respect to an equivalence relation)      135.B
Set ratio      136.F
Set recurrent      260.E
Set recursive      356.D
Set recursively enumerable      356.D
Set regularly convex      89.G
Set relative closed      425.J
Set relatively compact      425.S
Set relatively compact (in a metric space)      273.F
Set relatively open      425.J
Set removable (for a family of functions)      169.C
Set residual      126.H 425.N
Set resolvent (of a closed operator)      251.F
Set resolvent (of a linear operator)      390.A
Set S-      308.I
Set saddle      126.E
Set scattered      425.O
Set semipolar      261.D
Set Sidon      192.R 194.R
Set sieved      22.B
Set singularity (of a proper meromorphic mapping)      23.D
Set stable      173.D
Set stable, externally      186.I
Set stable, internally      186.I
Set standard      22.I
Set strongly F-convex      112.C
Set strongly separated convex      89.A
Set system of closed      425.B
Set system of open      425.B
Set ternary      79.D
Set theory      381.F
Set theory axiomatic      33156.E
Set theory Bernays — Godel      33.A C
Set theory Boolean-valued      33.E
Set theory classical descriptive      356.H
Set theory effective descriptive      356.H
Set theory general      33.B
Set theory Godel      33.C
Set theory Zermelo      33.B
Set theory Zermelo — Fraenkel      33.A B
Set thin (in potential theory)      261.D
Set totally bounded (in a metric space)      273.B
Set totally bounded (in a uniform space)      436.H
Set U-      159.J
Set universal (for the projective sets of class n)      22.E
Set universal (of set theory)      381.B
Set wandering (under a measurable transformation)      136.C
Set wave front      274.B 345.A
Set wave front, analytic      274.D
Set weakly wandering      136.C
Set weakly wandering (under a group)      136.F
Set well-ordered      311.C
Set Z-      382.B
Set Zariski closed      16.A
Set Zariski dense      16.A
Set Zariski open      16.A
Set(s)      381
Set-theoretic formula      33.B
Set-theoretic topology      426
Sevast’yanov, Boris Aleksandrovich      44.r
Severi group, Neron- (of a variety)      16.P
Severi group, Neron-(of a surface)      15.D
Severi, Francesco      9.F r D F
Sewell inequality, Roepstorff — Araki-      402.G
Sewell, Geoffrey Leon      402.G
Sewell, Walter Edwin      336.H
Sgarro, Andrea      213.r
sgn P(sign)      103.A
Shabat, Aleksei Borisovich      387.F
Shadow costs      292.C
Shadow price      255.B
Shafarevich group, Tate-      118.D
Shafarevich reciprocity law      257.H
Shafarevich, Igor’ Rostislavovich      14.r 15.r 16.r 59.F H E S
Shallow water wave      205.F
Shampine, Lawrence Fred      303.r
Shaneson, Julius L.      65.D 114.J K r
Shanks, Daniel      332.r
Shanks, E. B.      109.r
Shanks, William      332
Shannon, Claude Elwood      31.C 136.E 213.A D-F403.r
Shannon, Robert E.      385.r
Shape category      382.A
Shape dominate      382.A
Shape function      223.G
Shape group      382.C
Shape invariant(s)      382.C
Shape morphism      382.A
Shape pointed      382.A
Shape same      382.A
Shape theory      382
Shapiro — Lopatinskii condition      323.H
Shapiro, Harold N.      123.D
Shapiro, Harold S.      43.r
Shapiro, Harvey L.      425.r
Shapiro, Jeremy F.      215.r 264.r
Shapiro, Zoya Yakovlevna      258.r 323.H
Shapley value      173.D
Shapley, Lloyd Stowell      173.D E
Sharkovskii, Aleksandr Nikolaevich      126.N
Sharpe, Michael J.      262.r
Shaw H.      75.r
Shaw, B.      251.K
Shchegol’kov (Stschegolkow), Evgenii Alekseevich      22.r
Sheaf (sheaves)      383
Sheaf (sheaves) (in etale (Grothendieck) topology)      16.AA
Sheaf (sheaves) analytic      72.E
Sheaf (sheaves) associated with a presheaf      383.C
Sheaf (sheaves) Cech cohomology group with coefficient      383.F
Sheaf (sheaves) coherent algebraic      16.E 72.F
Sheaf (sheaves) coherent analytic      72.E
Sheaf (sheaves) coherent, of rings      16.E
Sheaf (sheaves) cohomology group with coefficient      383.E
Sheaf (sheaves) constant      383.D
Sheaf (sheaves) constructible      16.AA
Sheaf (sheaves) derived      125.W
Sheaf (sheaves) flabby      383.E
Sheaf (sheaves) invertible      16.E
Sheaf (sheaves) locally constructible (constant)      16.AA
Sheaf (sheaves) of $\mathscr O$-modules      383.I
Sheaf (sheaves) of Abelian groups      383.B
Sheaf (sheaves) of germs of analytic functions      383.D
Sheaf (sheaves) of germs of analytic mapping      383.D
Sheaf (sheaves) of germs of continuous functions      383.D
Sheaf (sheaves) of germs of differentiable sections of a vector bundle      383.D
Sheaf (sheaves) of germs of differential forms of degree of r      383.D
Sheaf (sheaves) of germs of functions of class $C^r$      383.D
Sheaf (sheaves) of germs of holomorphic functions (on an analytic manifold)      383.D
Sheaf (sheaves) of germs of holomorphic functions (on an analytic set)      23.C
Sheaf (sheaves) of germs of holomorphic functions (on an analytic space)      23.C
Sheaf (sheaves) of germs of regular functions      16.B
Sheaf (sheaves) of germs of sections of a vector bundle      383.D
Sheaf (sheaves) of groups      383.C
Sheaf (sheaves) of ideals of a divisor (of a complex manifold)      72.F
Sheaf (sheaves) of rings      383.C
Sheaf (sheaves) orientation      201.R
Sheaf (sheaves) pre-      383.A
Sheaf (sheaves) pre-, on a site      16.AA
Sheaf (sheaves) scattered      383.E
Sheaf (sheaves) structure (of a prealgebraic variety)      16.C
Sheaf (sheaves) structure (of a ringed space)      383.H
Sheaf (sheaves) structure (of a variety)      16.B
Sheaf (sheaves) trivial      383.D
Sheaf space      383.C
Shear viscosity, coefficient of      205.C
Shear, modules of elasticity in      271.G
Shearing strain      271.G
Shearing stress      271.G
Sheet hyperboloid of revolution of one      350.B
Sheet hyperboloid of revolution of two      350.B
Sheet hyperboloid of two      350.B
Sheet mean number of (of a covering surface of a Riemann sphere)      272.J
Sheet number of (of a covering surface)      367.B
Sheet number of (of an analytic covering space)      23.E
Sheet(s) hyperboloid of one      350.B
Sheeted, n-      367.B
Shelah isomorphism theorem, Keisler-      276.E
Shelah, Saharon      33.r 276.E F r
Shelly, Maynard Wolfe      227.r
Shelukhin, V.V.      204.F
Shen Chao-Liang      36.H
Shenk, Norman A.,H.      112.P
Shepard, Roger Newland      346.E r
Sher, Richard B.      382.D
Sherman, Seymour      212.A r
Shewhart, Walter Andrew      401.G 404.A B
Shiba, Masakazu      367.I
Shibagaki, Wasao      174.r App. A Table
Shidlovskii, Andrei Borisovich      430.D r
Shields — Zeller theorem, Brown-      43.C
Shields, Allen Lowell      43.G r
Shields, Paul C.      136.E r
Shift      251.O
Shift associated with the stationary process      136.D
Shift automorphism      126.J
Shift Bernoulli      136.D
Shift generalized Bernoulli      136.D
Shift Markov      136.D
Shift operator      223.C 251.O 306.C
Shift operator unilateral      390.I
Shift phase      375.E 386.B
Shift transformation      136.D
Shiga, Kiyoshi      195.r
Shiga, Koji      72.r 147.O
Shige-eda, Shinsei      96.r
Shikata, Yoshihiro      178.r
Shilov boundary (for a function algebra)      164.C
Shilov boundary (of a domain)      21.D
Shilov boundary (of a Siegel domain)      384.D
Shilov generalized function, Gel’fand-      125.S
Shilov, Georgii Evgen’evich      21.D 36.M 125.A Q S
Shimada, Nobuo      114.B 202.S
Shimakura, Norio      323.H N
Shimidt (Schmidt), Otto Yul’evich      190.L 277.I
Shimizu, Hideo      32.H 450.L r
Shimizu, Ryoichi      374.H
Shimizu, Tatsujiro      124.B 272.J
Shimodaira, Kazuo      230.r
Shimura, Goro      3.M r F H r r r L M S U r
Shintani, Hisayoshi      303.r
Shintani, Takuro      450.A E G V r
Shioda, Tetsuji      450.Q S
Shiohama, Katsuhiro      178.r
Shiraiwa, Kenichi      126.J
Shirkov, Dmitril Vasil’evich      150.r 361.r
Shiryaev, Al’bert Nikolaevich      86.E 395.r 405.r
Shisha, Oved      211.r
Shizuta, Yasushi      41.D 112.P
Shmul’yan theorem      424.V
Shmul’yan theorem Eberlein-      37.G
Shmul’yan theorem Krein-      37.E 424.O
Shmul’yan, Yu.V.      37.E G V
Shnider, Steven David      344.C-E
Shnirel’man theory, Lyusternik-      286.Q
Shnirel’man, Lev Genrikhovich      4.A 279.G 286.Q r
Shock wave      205.B 446
Shoda, Kenjiro      8 29.F
Shoenfield, Joseph Robert      22. F H r
Shohat, James Alexander      240.r 341.r
Short exact sequence      200.I
Short international notation      92.E
Short range      375.B
Shortening      186.E
Shortest representation (of an ideal)      67.F
Shortest-path problem      281.C
Shortley, George H.      353.r
Shrelder, Yulii Anatol’evich      192.r
Shrikhande square      102.K
Shrikhande, S.S.      102.K 241.B STR
Shrinking (a space to a point)      202.E
Shub, Michael      126.J K r
Shubik, Martin      173.r
Shubnikov, Aleksei Vasil’evich      92.F r
Shult, Ernest E.      151.J
Shultz, Frederic W.      351.L
Shunt left      115.B
Shunt right      115.B
Shvarts (Schwarz, Svarc), Al’bert Solomonovich      56.H 80.r 286.D
SI(international system of units)      414.A
Sibuya, Yasutaka      289.D E r
Sidak, Zbynek      371.r
Side      155.B F
Side (of a complete quadrangle)      343.C
Side (of a point with respect to a hyperplane)      7.D
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте