Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Tensor irreducible, of rank k      353.C
Tensor Maxwell stress      130.A
Tensor mixed      256.J
Tensor Nijenhuis      72.B
Tensor numerical      App. A Table
Tensor of type (p, q)      256.J
Tensor product $\varepsilon$      424.R
Tensor product (of A-homomorphisms)      277.J
Tensor product (of A-modules)      277.J
Tensor product (of algebras)      29.A
Tensor product (of chain complexes)      201.J
Tensor product (of cochain complexes)      201.J
Tensor product (of distributions)      125.K
Tensor product (of Hilbert spaces)      308.C
Tensor product (of linear mappings)      256.I
Tensor product (of linear representations)      362.C
Tensor product (of linear spaces)      256.I
Tensor product (of locally convex spaces)      424.R
Tensor product (of sheaves)      383.I
Tensor product (of vector bundles)      147.F
Tensor product (of von Neumann algebras)      308.C
Tensor product continuous      377.D
Tensor product projective C*-      36.H
Tensor product spatial      36.H
Tensor projective curvature      App. A Table
Tensor representation (of a general linear group)      256.M
Tensor Ricci      364.D App. Table
Tensor second fundamental      417.F
Tensor skew-symmetric      256.N
Tensor space of degree k      256.J
Tensor space of type (p, q)      256.J
Tensor strain      271.G
Tensor stress      150.B 271.G
Tensor symmetric      256.N
Tensor torsion      App. A Table
Tensor torsion (of a Frechet manifold)      286.L
Tensor torsion (of a Riemannian connection)      80.L
Tensor torsion (of an affine connection)      80.J 417.B
Tensor torsion (of an almost contact structure)      110.E
Tensor Weyl’s conformal curvature      80.P
Tensorial form      80.G
Tensorial p-form      417.C
Teplitz, Vigdor L.      146.r
ter Haar, Dick      402.r
Terada, Toshiaki      206.D 428.H
Terano, Takao      301.F
Terasaka, Hidetaka      235.A C
Terjanian, Guy      118.F
Term (in predicate logic)      411.H
Term (of a language)      276.A
Term (of a polynomial)      337.B
Term (of a sequence)      165.D
Term (of a series)      379.A
Term base (of a spectral sequence)      200.J
Term closed (of a language)      276.A
Term constant (of a formal power series)      370.A
Term constant (of a polynomial)      337.B
Term error      403.D
Term fiber (of a spectral sequence)      200.J
Term initial (of an infinite continued fraction)      83.A
Term nth (of sequence)      165.D
Term penalty      440.B
Term subtraction      111.B
Term undefined      35.B
Terminal decision rule      398.F
Terminal point (in a Markov process)      261.B
Terminal point (of a curvilinear integral)      94.D
Terminal point (of a path)      170
Terminal point (of a vector)      442.A
Terminal time      261.B
Terminal vertex      186.B
Termwise differentiable (infinite series with function terms)      379.H
Termwise differentiation, theorem of (on distributions)      125.G
Termwise integrable (series)      216.B
Ternary set      79.D
Terry model, Bradley-      346.C
Terry normal score test, Fisher — Yates-      371.C
Terry, Milton Everett      346.C 371.C
Tertiary obstruction      305.D
Tertium non datur      156.C
Tesseral harmonics      393.D
test      400.A
Test Abel      379.D
Test almost invariant      400.E
Test Cauchy condensation      379.B
Test Cauchy integral      379.B
Test channel      213.E
Test chi-square      400.G
Test chi-square, of goodness of fit      400.K
Test comparison      379.B
Test consistent      400.K
Test Dini (on the convergence of Fourier series)      159.B
Test Dini — Lipschitz (on the convergence of Fourier series)      159.B
Test Dirichlet (on Abel’s partial summation)      379.D
Test Dirichlet (on the convergence of Fourier series)      159.B
Test duo-trio      346.D
Test F-      400.G
Test Fisher — Yates — Terry normal score      371.C
Test function      400.A
Test function space      125.S
Test goodness-of-fit      397.Q 401.E
Test invariant      400.E
Test Jordan (on the convergence of Fourier series)      159.B
Test Kolmogorov      45.F
Test Kolmogorov — Smirnov      371.F
Test Kruskal — Wallis      371.D
Test Lebesgue (on the convergence of Fourier series)      159.B
Test Leibniz (for convergence)      379.C
Test level a      400.A
Test likelihood ratio      400.I
Test Mann — Whitney U-      371.C
Test minimax level $\alpha$      400.F
Test most powerful      400.A
Test most stringent level $\alpha$      400.F
Test nonparametric      371.A
Test nonrandomized      400.A
Test of du Bois — Reymond and Dedekind      379.D
Test outlier      397.Q
Test pair      346.D
Test randomized      400.A
Test sensory      346.B
Test sequential      400.L
Test sequential probability ratio      400.L
Test sign      371.B
Test signed rank      371.B
Test similar      400.D
Test statistics, Kolmogorov — Smirnov      374.E
Test Student      400.G
Test sufficient ($\sigma$-field)      396.J
Test t-      400.G
Test triangle      346.D
Test UMP in variant level a      400.E
Test UMP unbiased level a      400.C
Test unbiased level a      400.C
Test uniformly consistent      400.K
Test uniformly most powerful (UMP)      400.A
Test uniformly most powerful invariant level $\alpha$      400.E
Test uniformly most powerful unbiased level $\alpha$      400.C
Test van der Waerden      371.C
Test Welch      400.G
Test Wiener (for Brownian motion)      45.D
Test Wiener (for Dirichlet problem)      338.G
Test Wiener (for random walk)      260.E
Test Wilcoxon      371.C
Test Wilcoxon signed rank      371.B
Testing hypothesis      401.C
Testing statistical hypothesis      400
Tetracyclic coordinates      90.B
Tetragamma function      174.B
Tetragonal (system)      92.E
Tetrahedral group      151.G
tetrahedron      7.D 357.B
Tetrahedron polar      350.C
Tetrahedron self-polar      350.C
Thales      35.A 181 187
Theaitetus      187
Theil, Henri      128.r
Theodorsen function      39.E
Theodorsen, Theodore      39.F
Theodorus      187
Theon      187
Theorem A      21.L 72.E F
Theorem B      21.L 72.E F
Theorem Brouwer’s, on the invariance of domain      117.D
Theorem cup product reduction      200.M
Theorem invariance, of analytic relations      198.K
Theorem kernel      125.L 424.S
Theorem local limit      250.B
Theorem of coding      273.D-F
Theorem of completeness (in geometry)      155.B
Theorem of identity      21.C
Theorem of linear ordering (in geometry)      155.B
Theorem of momentum      271.E
Theorem of quasiconformal reflection      352.C
Theorem of Tauberian type      339.B
Theorem of termwise differentiation (of distributions)      125.G
Theorem on complete form      356.H
Theorem on invariance of dimension of Euclidean spaces      117.D
Theorem product, for dimension      117.C
Theorem structure, for von Neumann algebras of type III      308.I
Theorem translation (in class field theory)      59.C
Theorem translation representation      375.H
Theorem transversality      105.L
Theorem triangle comparison      178.A
Theorem Tucker’s, on complementary slackness      255.B
Theorem unicursal graph (Euler’s)      186.F
Theorem Weierstrass’s, of double series      379.H
Theorem(s) of angular momentum      271.E
Theoretical formula      19.F
Theory Ahlfors’s, of covering surfaces      272.J 367.B
Theory Cantor’s, of real numbers      294.E
Theory class field      59
Theory classification, of Riemann surfaces      367.E
Theory combinatorial      66.A
Theory complete cohomology      200.N
Theory constructive field      150.F
Theory de Rham homotopy      114.L
Theory Dedekind’s, of real numbers      294.E
Theory dimension      117
Theory Euclidean field      150.F
Theory Euclidean Markov field      150.F
Theory exact sampling      401.F
Theory finite-displacement (of elasticity)      271.G
Theory Galois      172
Theory Galois, of differential fields      113
Theory game      173
Theory graph      186
Theory Haag — Ruelle scattering      150.D
Theory hidden variables      351.L
Theory hydromagnetic dynamo      259
Theory information      213
Theory Kaluza’s 5-dimensional      434.C
Theory large sample      401.E
Theory lattice gauge      150.G
Theory Littlewood — Paley      168.B
Theory local class field      59.G
Theory Lyusternik — Shnirel’man      286.Q
Theory Minkowski reduction (on fundamental regions)      122.E
Theory Morse      279
Theory Morse, fundamental theorems of      279.D
Theory Nevanlinna (of meromorphic functions)      124.B 272.B
Theory nonsymmetric unified field      434.C
Theory number, analytic      296.B
Theory number, elementary      297
Theory number, geometric      296.B
Theory of buildings      343.I
Theory of calculus of variations, classical      46.C
Theory of elasticity      271.G
Theory of electromagnetic waves      130.B
Theory of functions      198.Q
Theory of functions of a complex variable      198.Q
Theory of gases, kinetic      402.B
Theory of perturbations, general      420.E
Theory of perturbations, special      420.E
Theory of plasticity      271.G
Theory of probability      342.A
Theory of relativity, general      359.A
Theory of relativity, special      359.A
Theory of singularities      418
Theory oferrors      138.A
Theory Peter — Weyl (on compact groups)      69.B
Theory Peter — Weyl (on compact Lie groups)      249.U
Theory Picard — Vessiot      113
Theory prediction      395.D
Theory prediction, linear      395.D
Theory proof      156.D
Theory quantum field      150.C
Theory ramified type      411.K
Theory realization      86.D
Theory risk      214.C
Theory risk, classical      214.C
Theory risk, collective      214.C
Theory risk, individual      214.C
Theory S-matrix      386.C
Theory Serre $\mathscr C$      202.N
Theory set      381.F
Theory slender body      205.B
Theory small-displacement, of elasticity      271.G
Theory supermultiplet, Wigner’s      351.J
Theory syzygy      200.K
Theory thin wing      205.B
Theory Tomita-Takesaki      308.H
Theory type      411.K
Theory unified field      434.A
Theory unitary field      434.C
Thermal contact      419.A
Thermal expansion, coefficient of      419.A
Thermal noise      402.K
Thermodynamic limit      402.G
Thermodynamical quantity      419.A
Thermodynamical quantity extensive      419.A
Thermodynamical quantity intensive      419.A
Thermodynamics      419
Thermodynamics 0th law of      419.A
Thermodynamics first law of      419.A
Thermodynamics second law of      419.A
Thermodynamics statistical      402.A
Thermodynamics third law of      419.A
Theta formula (on ideles)      6.F
Theta function      134.I
Theta function (on a complex torus)      3.I
Theta function elliptic      134.I App. Table
Theta function graded ring of      3.N
Theta function Jacobian      134.C
Theta function nondegenerate      3.I
Theta function Riemann      3.L
Theta series      348.L
Theta-Fuchsian series of Poincare      32.B
Thick (chamber complex)      13.R
Thickness (of an oval)      89.C
Thimm, Walter      23.D
Thin (chamber complex)      13.R
Thin set (in Markov processes)      261.D
Thin set (in potential theory)      338.G
Thin set analytically (in an analytic space)      23.D
Thin set internally      338.G
Thin wing theory      205.B
Third boundary value problem      193.F 323.F
Third classification theorem (in the theory of obstructions)      305.C
Third extension theorem (in the theory of obstructions)      305.C
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте