Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Subset axiom of      33.B 381.G
Subset Borel      270.C
Subset circled (of a linear topological space)      424.E
Subset cofinal      311.D
Subset G-      362.B
Subset k-      330
Subset proper      381.A
Subset residual      311.D
Subset(s)      381.A
Subshift      126.J
Subshift Markov      126.J
Subshift of finite type      126.J
Subsidiary equation, Charpit      82.C 320.D
Subsonic (Mach number)      205.B
Subsonic flow      326.A
Subspace (of a linear space)      256.F
Subspace (of a projective space)      343.B
Subspace (of a topological space)      425.J
Subspace (of an affine space)      7.A
Subspace analytic      23.C G
Subspace closed linear (of a Hilbert space)      197.E
Subspace complementary (of a linear subspace)      256.F
Subspace horizontal      191.C
Subspace ingoing      375.H
Subspace invariant (of a linear operator)      251.L
Subspace involutive      428.F
Subspace linear (of a linear space)      256.F
Subspace metric      273.B
Subspace n-particle      377.A
Subspace orthogonal (determined by a linear subspace)      256.G
Subspace orthogonal (of a linear space)      139.G
Subspace outgoing      375.H
Subspace parallel (in an affine space)      7.B
Subspace parallel, in the narrower sense (in an affine space)      7.B
Subspace parallel, in the wider sense (in an affine space)      7.B
Subspace precompact (metric)      273.B
Subspace principal (of a linear operator)      390.B
Subspace root (of a linear operator)      390.B
Subspace root (of a semisimple Lie algebra)      248.K
Subspace singular (of a singular projective transformation)      343.D
Subspace totally bounded (metric)      273.B
Subspace totally isotropic (relative to an $\varepsilon$-Hermitian form)      60.O
Subspace totally isotropic (with respect to a quadratic form)      348.E
Subspace totally singular (with respect to a quadratic form)      348.E
Subspace U-invariant (of a representation space of a unitary representation      437.C
Subspace uniform      436.E
Substituted distribution      125.Q
Substitution (of a hyperfunction)      125.X 274.E
Substitution axiom of      381.G
Substitution back      302.B
Substitution Frobenius (of a prime ideal)      14.K
Subsystem (of an algebraic system)      409.C
Subsystem closed (of a root system)      13.L
Subtraction      361.B
Subtraction terms      361.B
Subvariety, Abelian      3.B
Successive approximation method of (for an elliptic partial differential equation)      323.D
Successive approximation method of (for Fredholm integral equations of the second kind)      217.D
Successive approximation method of (for ordinary differential equations)      316.D
Successive approximation successive minima (in a lattice)      182.C
Successive approximation successive minimum points      182.C
Successive approximation successive overrelaxation (SOR)      302.C
Successive approximation successor (of a natural number)      294.B
Successive approximation successor (of an element in an ordered set)      311.B
Suetuna, Zyoiti      242.B 295.D 450.E
Sufficiency prediction      396.J
Sufficiency principle of      401.C
Sufficiency sufficient ($\sigma$-field, statistic) Bayes      396.J
Sufficiency sufficient ($\sigma$-field, statistic) D-      396.J
Sufficiency sufficient ($\sigma$-field, statistic) decision theoretically      396.J
Sufficiency sufficient ($\sigma$-field, statistic) minimal      396.E
Sufficiency sufficient ($\sigma$-field, statistic) pairwise      396.F
Sufficiency sufficient ($\sigma$-field, statistic) test      396.J
Sufficiently many irreducible representations      437.B
Sugawara, Masao      73.A
Sugie, Toru      15.H
Sugimoto (Goto), Midori      178.r
Suita, Nobuyuki      77.E
Sukhatme, Balkrishna Vasudeo      373.r
Sukhatme, Pandurang Vasudeo      373.r
Sullivan, Dennis Parnell      65.C 114.J L r
Sum ( = union of sets)      33.B 381.B
Sum (a function)      104.B
Sum (of a divergent series by a summation)      379.L
Sum (of a quadrangular set of six points)      343.C
Sum (of a series)      379.A
Sum (of convergent double series)      379.E
Sum (of elements of a group)      190.A
Sum (of elements of a linear space)      256.A
Sum (of ideals)      67.B
Sum (of linear operators)      251.B
Sum (of linear subspaces)      256.F
Sum (of matrices)      269.B
Sum (of ordinal numbers)      312.C
Sum (of potencies)      49.C
Sum (of real numbers)      355.A
Sum (of submodules)      277.B
Sum (of vectors)      442.A
Sum amalgamated      52.G
Sum Baer (of extensions)      200.K
Sum cardinal (of a family of ordered sets)      311.F
Sum Cauchy (of a series)      379.A
Sum connected (of 3-manifolds)      65.E
Sum connected (of oriented compact $C^{\infty}$-manifolds)      114.F
Sum constant- (game)      173.A
Sum Darboux      216.A
Sum Dedekind      328.A
Sum diagonal (of a matrix)      269.F
Sum diagonal partial (of a double series)      379.E
Sum disjoint      381.B
Sum event      342.B
Sum fiber      52.G
Sum Gaussian      295.D 450.C
Sum general-(game)      173.A
Sum indefinite (of a function)      104.B
Sum Kloosterman      32.C
Sum local Gaussian      450.F
Sum logical (of propositions)      411.B
Sum of products      216.A
Sum ordinal (of a family of ordered sets)      311.G
Sum orthogonality for a finite      19.G 317.D
Sum over states      402.D
Sum partial (of a series)      379.A
Sum Raman ujan      295.D
Sum Riemann      216.A
Sum scalar (of linear operators)      37.C
Sum theorem for dimension      117.C
Sum topological      425.M
Sum trigonometric      4.C
Sum Whitney (of vector bundles)      147.F
Sum zero (game)      173.A
Sum zero-, two-person game      108.B
Sumihiro, Hideyasu      16.Z
Summable $\mathfrak B$-      379.O
Summable $|\mathfrak B|$-      379.O
Summable (H,p)-      379.M
Summable (R,k)-      379.S
Summable A-      379.N
Summable absolute Borel      379.O
Summable by Abel’s method      379.N
Summable by Borel’s exponential method      379.O
Summable by Borel’s integral method      379.O
Summable by Cesaro’s method of order a      379.M
Summable by Euler’s method      379.P
Summable by Holder’s method of order p      379.M
Summable by Norlund’s method      379.Q
Summable by Riesz’s method of order k      379.R
Summable pth power, operator of      68.K
Summable T-      379.L
Summand, direct (of a direct sum of sets)      381.E
Summation $C,\alpha$-      379.M
Summation Abel’s method of      379.N
Summation Abel’s partial      379.D
Summation Borel’s method of      379.N
Summation Cesaro’s method of, of order a      379.M
Summation convention, Einstein’s      417.B
Summation Euler’s method of      379.P
Summation formula Euler      295.E
Summation formula Poisson (on a locally compact Abelian group)      192.L
Summation formula Poisson (on Fourier transforms)      192.C
Summation Lebesgue’s method of      379.S
Summation methods of      379.L
Summation Norlund’s method of      379.Q
Summation of a function      104.B
Summation Riemann’s method of      379.S
Summation Riesz’s method of, of the kth order      379.R
Summing, absolutely (operator)      68.N
Sunada, Toshikazu      195.r 391.C
Sundman theorem      420.C
Sundman, Karl Frithiof      420.C
Sunouchi, Gen-ichiro      159.G H
Sunzi      57.A
Sup (supremum)      311.B
Superabundance (of a divisor on an algebraic surface)      15.D
Superadditive      173.D
Superconductivity      130.B
Supercritical (Galton — Watson process)      44.B
Superefficient estimator      399.N
Superharmonic (function)      193.P 260.D
Superharmonic measure      260.I
Superharmonic transformation      261.F
Superior function, right      316.E
Superior limit (of a sequence of real numbers)      87.C
Superior limit (of a sequence of subsets of a set)      270.C
Superior limit event      342.B
Supermartingale      262.A
Supermultiplet theory      351.J
Superposition, principle of      252.B 322.C
Superregular function      260.D
Superrenormalizable      150.C
Superscripts, lowering      417.D
Superselection rule, univalence      351.K
Superselection sector      150.E 351.K
Supersolvable group      151.D
Supersonic      205.B 326.A
Supplementary angles      139.D
Supplementary interval      4.B
Supplementary series      258.C
Supplementation-equal polygons      155.F
Supplemented algebra      200.M
Support (of a coherent sheaf)      16.E
Support (of a differential form)      105.Q
Support (of a distribution)      125.D
Support (of a function)      125.B 168.B 425.R
Support (of a section of a sheaf)      383.C
Support (of a spectral measure)      390.D
Support compact (of a singular q-cochain)      201.P
Support essential (of a distribution)      274.D
Support singular (of a distribution)      112.C
Support singular (of a hyperfunction)      125.W
Supporting function      125.O
Supporting functional (of a convex set)      89.G
Supporting half-space (of a convex set)      89.A
Supporting hyperplane (of a convex set)      89.A
Supporting line (of an oval)      89.C
Supporting line function (of an oval)      89.C
Supporting point (of a convex set)      89.G
Supporting point (of a projective frame)      343.C
Supremum (of a set of Hermitian operators)      308.A
Supremum (of a subset of a vector lattice)      310.C
Supremum (of an ordered set)      168.B
Supremum essential (of a measurable function)      168.B
Supremum norm      168.B
Supremum theorem, Hardy-Littlewood      App. A Table
Suranyi, Janos      97.B
Sure event      342.B
Surely, almost      342.B D
Surface Abelian      15.H
Surface abstract Riemann      367.A
Surface affine minimal      110.C
Surface algebraic      15
Surface area of unit hypersphere      App. A Table
Surface basic (of a covering surface)      367.B
Surface branched minimal      275.B
Surface center      111.I
Surface characteristic      320.B
Surface circular cylindrical      350.B
Surface closed      410.B
Surface closed (in a 3-dimensional Euclidean space)      111.I
Surface closed convex      111.I
Surface conical      111.I
Surface covering      367.B
Surface covering, Ahlfors theory of      367.B
Surface covering, with relative boundary      367.B
Surface cylindrical      111.I
Surface deformation of      110.A
Surface degenerate quadric      350.B
Surface developable      111.I App. Table
Surface Dini      111.I
Surface element      324.B
Surface elliptic      72.K
Surface elliptic cylindrical      350.B
Surface energy      126.L 402.C G
Surface Enneper      275.B
Surface Enriques      72.K
Surface enveloping      111.I
Surface equipotential      193.J
Surface Frechet      246.I
Surface fundamental theorem of the theory of      111.G
Surface fundamental theorem of the topology of      410.B
Surface G-      178.H
Surface geometry on a      111.G
Surface harmonics      393.A
Surface helicoidal      111.I
Surface Hilbert modular      15.H
Surface Hirzebruch      15.G
Surface Hopf      72.K
Surface hyperbolic cylindrical      350.B
Surface hyperelliptic      72.K
Surface initial      321.A
Surface integral      94.A E
Surface integral (with respect to a surface element)      94.E
Surface K3      15.H 72.K
Surface Kummer      15.H
Surface level      193.J
Surface marked K3      72.K
Surface minimal      111.I 334.B
Surface niveau      193.J
Surface of constant curvature      111.I
Surface of general type      72.K
Surface of revolution      111.I
Surface of the second class      350.D
Surface of the second order      350.A
Surface one-sided      410.B
Surface open      410.B
Surface parabolic cylindrical      350.B
Surface proper quadric      350.B
Surface quadric      350.A
Surface quadric conical      350.B
Surface rational      15.E
Surface rectifying      111.I
Surface response      102.L
Surface response, design for exploring      102.M
Surface ruled      15.E
Surface ruled (in differential geometry)      111.I
Surface Scherk’s      275.A
Surface Seifert      235.A
Surface skew      111.I
Surface special      110.A
Surface tangent      111.F
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте