Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Surface two-sided      410.B
Surface unbounded covering      367.B
Surface unirational      15.H
Surface universal covering      367.B
Surface unramified covering      367.B
Surface Veronese      275.F
Surface W-      111.I
Surface wave      446
Surface Weingarten (W)      111.I
Surface with boundary      410.B
Surface(s)      111.A 410 App. Table
Surgery      114.F J
Surgery obstruction      114.J
Surjection      381.C
Surjection (in a category)      52.D
Surjection canonical (on direct products of groups)      190.L
Surjection canonical (onto a quotient set)      135.B
Surjection canonical (to a factor group)      190.D
Surjection natural (to a factor group)      190.D
Surjective mapping      381.C
Survival insurance      214.B
Susceptibility electric      130.B
Susceptibility magnetic      130.B
Suslin (Souslin), Mikhail Yakovlevich      22.A-C H I
Suslin hypothesis      33.F
Suslin k-      22.H
Suslin schema of      22.B
Suslin space      22.I 425.CC
Suslin system of      22.B
Suslin theorem      22.C
Suslin, Andrei Aleksandrovich      16.Y 200.K 369.F
Suspension (of a discrete dynamical system)      126.C
Suspension (of a homotopy class)      202.Q
Suspension (of a map)      202.F
Suspension (of a space)      202.E F
Suspension isomorphism (on singular (co)homology groups)      201.E
Suspension n-fold reduced      202.F
Suspension reduced (of a topological space)      202.F
Suspension theorem, generalized      202.T
Sussmilch, Johann Peter      401.E
Suzuki group      151.I
Suzuki, Michio      151.I J r Table
Suzuki, Mitsuo      173.E
SVD (singular value decomposition)      302.E
Swan, Richard G.      200.M 230.r 362.r 383.r
Sweedler, Moss E.      172.A K
Sweep (a bounded domain)      384.F
Sweep out (a measure to a compact set)      338.L
Sweepable (bounded domain)      384.F
Sweeping-out principle      338.L
Sweeping-out process      338.L
Swierczkowski, S.      22.H
Swinnerton — Dyer conjecture, Birch-      118.D 450.S
Swinnerton-Dyer, Henry Peter Francis      118.D E Q S
Switzer, Robert M.      202.r
Sylow subgroup      151.B
Sylow subgroup p-      151.B
Sylow theorem      151.B
Sylow, Peter Ludvig Mejdell      151.B
Sylvester elimination method      369.E
Sylvester law of inertia (on a quadratic form)      348.B
Sylvester theorem (on determinants)      103.F
Sylvester, James Joseph      103.F 186.A 226.G 267 297.D 348.C 369.E F
Symanzik equation, Callan-      361.B
Symanzik, Kurt      132.C 150.D F r
Symbol      369.A
Symbol (= Steinberg symbol)      237.J
Symbol (of a Fourier integral operator)      274.C
Symbol (of a pseudodifferential operator)      251.0345.B
Symbol (of a vector field)      105.M
Symbol 3q      353.B
Symbol 6q-      353.B
Symbol 9j-      353.C
Symbol Artin      14.K
Symbol Christoffel      80.I 111.H 417.D App. Table
Symbol function      411.H
Symbol Gauss      83.A
Symbol Hilbert norm-residue      14.R
Symbol Hilbert — Hasse norm-residue      14.R
Symbol Hilberte-      411.J
Symbol individual      411.H
Symbol Jacobi      297.I
Symbol Jacobi, complementary law of      297.I
Symbol Jacobi, law of quadratic reciprocity of      297.I
Symbol Kronecker      347.D
Symbol Landau (O,o)      87.G
Symbol Legendre      297.H
Symbol Legendre, first complementary law of      297.I
Symbol Legendre, law of quadratic reciprocity of      297.I
Symbol Legendre, second complementary law of      297.I
Symbol logical      411.B
Symbol norm-residue      14.Q 257.F
Symbol power-residue      14.N
Symbol predicate      411.H
Symbol principal (of a differential operator)      237.H
Symbol principal (of a microdifferential operator)      274.F
Symbol principal (of a simple holonomic system)      274.H
Symbol sequence (in microlocal analysis)      274.F
Symbol Steinberg (in algebraic k-theory)      237.J
Symbolic logic      411
Symmetric (block design)      102.E
Symmetric (factorial experiment)      102.H
Symmetric (Fock space)      377.A
Symmetric (member of a uniformity)      436.B
Symmetric (multilinear mapping)      256.H
Symmetric (relation)      358.A
Symmetric (tensor)      256.N
Symmetric algebra      29.H
Symmetric bilinear form (associated with a quadratic form)      348.A
Symmetric bounded domain      412.F
Symmetric bounded domain irreducible      412.F
Symmetric Cauchy process      5.F
Symmetric difference      304.E
Symmetric distribution function      341.H
Symmetric event      342.G
Symmetric function      337.I
Symmetric function elementary      337.I
Symmetric group      190.B
Symmetric group of degree n      151.G
Symmetric Hermitian space      412.E
Symmetric Hermitian space irreducible      412.E
Symmetric homogeneous space      412.B
Symmetric hyperbolic system (of partial differential equations)      325.G
Symmetric kernel      217.G 335.D
Symmetric law (in an equivalence relation)      135.A
Symmetric Markov process      261.C
Symmetric matrix      269.B
Symmetric matrix anti-      269.B
Symmetric matrix skew-      269.B
Symmetric multilinear form      256.H
Symmetric multilinear form anti-      256.H
Symmetric multilinear form skew-      256.H
Symmetric multilinear mapping      256.H
Symmetric multilinear mapping anti-      256.H
Symmetric multilinear mapping skew-      256.H
Symmetric multiplication      406.C
Symmetric operator      251.E
Symmetric points (with respect to a circle)      74.E
Symmetric polynomial      337.I
Symmetric polynomial elementary      337.I
Symmetric polynomial fundamental theorem on      337.I
Symmetric positive system (of differential operators)      112.S
Symmetric positive system (of first-order linear partial differential equations)      326.D
Symmetric product (of a topological space)      70.F
Symmetric Riemannian homogeneous space      412.B
Symmetric Riemannian space globally      412.A
Symmetric Riemannian space irreducible      412.C App. Table
Symmetric Riemannian space locally      412.A App. Table
Symmetric Riemannian space weakly      412.J
Symmetric Riemannian space(s)      412
Symmetric space      412.A
Symmetric space affine      80.J
Symmetric space affine locally      80.J
Symmetric space locally      80.J 364.D
Symmetric stable process      5.F
Symmetric tensor      256.N
Symmetric tensor anti-      256.N
Symmetric tensor contravariant      256.N
Symmetric tensor covariant      256.N
Symmetric tensor field      105.0
Symmetric tensor skew-      256.N
Symmetrization (in isoperimetric problem)      228.B
Symmetrization Steiner (in isoperimetric problem)      228.B
Symmetrizer      256.N
Symmetrizer Young      362.H
Symmetry (at a point of a Riemannian space)      412.A
Symmetry (in quantum mechanics)      415.H
Symmetry (of a principal space)      139.B
Symmetry broken      132.C
Symmetry central (of an affine space)      139.B
Symmetry charge      415.J
Symmetry crossing      132.C 386.B
Symmetry degree of      431.D
Symmetry group, color      92.D
Symmetry hyperplanar (of an affine space)      139.B
Symmetry internal      150.B
Symmetry law of (for the Hilbert norm-residue symbol)      14.R
Symmetry Nelson      150.F
Symmetry TCP      386.B
Symmorphic space group      92.B
Symmorphous space group      92.B
Symplectic form      126.L
Symplectic group      60.L 151.I
Symplectic group complex      60.L
Symplectic group infinite      202.V
Symplectic group over a field      60.L
Symplectic group over a noncommutative field      60.O
Symplectic group projective (over a field)      60.L
Symplectic group unitary      60.L
Symplectic manifold      219.C
Symplectic matrix      60.L
Symplectic structure      219.C
Symplectic transformation      60.L
Symplectic transformation (over a noncommutative field)      60.O
Symplectic transformation group (over a field)      60.L
Synchronous (system of circuits)      75.B
Syndrome      63.C
Synge, John Lighten      152.C 178.B C
Synthesis (in the theory of networks)      282.C
Synthesis (in the theory of networks)spectral      36.L
Synthetic geometry      181
System adjoint (of a complete linear system on an algebraic surface)      15.D
System adjoint, of differential equations      252.K
System algebraic      409.B
System algebraic, in the wider sense      409.B
System ample linear      16.N
System asynchronous (of circuits)      75.B
System axiom      35
System axiom (of a structure)      409.B
System axiom (of a theory)      411.I
System base for the neighborhood      425.E
System C*-dynamical      36.K
System categorical (of axioms)      35.B
System character (of a genus of a quadratic field)      347.F
System characteristic linear (of an algebraic family)      15.F
System Chebyshev (of functions)      336.B
System classical dynamical      126.L 136.G
System complete (of axioms)      35.B
System complete (of independent linear partial differential equations)      324.C
System complete (of inhomogeneous partial differential equations)      428.C
System complete (of nonlinear partial differential equations)      428.C
System complete linear (on an algebraic curve)      9.C
System complete linear (on an algebraic variety)      16.N
System complete linear, defined by a divisor      16.N
System complete orthogonal      217.G
System complete orthonormal      217.G
System complete orthonormal, of fundamental functions      217.G
System complete residue, modulo m      297.G
System completely integrable (of independent 1-forms)      428.D
System continuous dynamical      126.B
System coordinate      90.A
System coordinate (of a line in a projective space)      343.C
System crystal      92.B
System determined (of differential operators)      112.R
System determined (of partial differential equations)      320.F
System differential      191.I
System differentiate dynamical      126.B
System direct (of sets)      210.B
System discrete dynamical      126.B
System distinct, of parameters      284.D
System dynamical      126
System equilibrium, transformation to      82.D
System formal      156.D 411.I
System fundamental (for a linear difference equation)      104.D
System fundamental (of a root system)      13.J
System fundamental (of eigenfunctions to an eigenvalue for an integral equation)      217.F
System fundamental root (of a semisimple Lie algebra)      248.N
System fundamental, of irreducible representations (of a complex semisimple Lie algebra)      248.W
System fundamental, of neighborhoods      425.E
System fundamental, of solutions (of a homogeneous linear ordinary differential equation)      252.B
System fundamental, of solutions (of a homogeneous system of first-order linear differential equations)      252.H
System Gamier      253.E
System group      235.B
System Haar, of orthogonal functions      317.C
System Hamiltonian      126.L
System holonomic      274.H
System holonomic, with regular singularities      274.H
System homotopy equivalent (of topological spaces)      202.F
System incompatible (of partial differential equations)      428.B
System inconsistent (of algebraic equations)      10.A
System indeterminate (of algebraic equations)      10.A
System inductive (in a category)      210.D
System inductive (of sets)      210.B
System inductive, of groups      210.C
System inductive, of topological spaces      210.C
System inertial      271.D 359
System information retrieval      96.F
System integrable      287.A
System international, of units      414.A
System inverse (of sets)      210.B
System involutory (of differential forms)      428.F
System involutory (of nonlinear equations)      428.C
System involutory (of partial differential equations of first order)      324.D
System involutory (of partial differential equations)      428.F
System irreducible linear      16.N
System lattice spin      402.G
System linear (on an algebraic variety)      16.N
System linear dynamical      86.B
System linear structural equation      128.C
System linear time-varying      86.B
System local coordinate (of a manifold)      105.C
System local coordinate (of a topological space)      90.D
System local coordinate, holomorphic      72.A
System local, of groups (over a topological space)      201.R
System mathematical (for a structure)      409.B
System maximal independent (of an additive group)      2.E
System neighborhood      425.B
System null (in projective geometry)      343.D
System number, point range of (in projective geometry)      343.C
System of axioms      35.B
System of closed sets      425.B
System of differential equations of Maurer — Cartan      249.R
System of differential operators      112.R
System of equations      10.A
System of functional differential equations      163.E
System of fundamental solutions (of a system of linear homogeneous equations)      269.M
System of generators (of a A-module)      277.D
System of gravitational units      414.B
System of hyperbolic differential equations (in the sense of Petrovskii)      325.G
System of linear differential equations of first order      252.G
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте