|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 |
|
|
Предметный указатель |
Sato conjecture 450.S
Sato — Bernshtein polynomial 125.EE
Sato, Atsushi 154.H
Sato, Fumihiro 450.V
Sato, Keniti 115.C D
Sato, Mikio 20 112.D 125.A V W BB EE C r M Q S V
Sato, Tokui 217.r 288.B
Sattinger, David H. 126.M 286.r
Saturated ((B, N)-pmr) 151.J
Saturated (fractional factorial design) 102.I
Saturated model, k- 293.B
Savage theorem, Girshick- 399.F
Savage zero-one law, Hewitt- 342.G
Savage, I. Richard 371.A C r
Savage, John E. 71.r
Savage, Leonard Jimmie 342.G 399.F r F
Savings premium 214.B
Sawada, Ken 126.J
Sawashima, Ikuko 310.H
Saxer, Walter 214.r
Sazonov topology 341.J
Sazonov, Vyachcslav Vasil’evich 341.J
Scalar (of a module over a ring) 277.D
Scalar change (of a B-module) 277.L
Scalar curvature 364.D App. Table
Scalar extension (of a linear representation) 362.F
Scalar extension (of an A-module) 277.L
Scalar extension (of an algebra) 29.A
Scalar field 105.O
Scalar field (in a 3-dimensional Euclidean space) 442.D
Scalar field free 377.C
Scalar field of (of a linear space) 256.A
Scalar integral 443.F I
Scalar matrix 269.A
Scalar multiple (in a linear space) 256.A
Scalar multiple (of a linear operator) 37.C
Scalar multiple (of a vector) 442.A
Scalar multiple (of an element of a module) 277.D
Scalar multiplication (in a module) 277.D
Scalar multiplication (on vectors) 442.A
Scalar operator 390.K
Scalar potential 130.A 442.D
Scalar product 442.B App. Table
Scalar restriction (of a B-module) 277.L
Scalar ring of (of a module) 277.D
Scalar sum (oflinear operators) 37.C
Scalar triple product 442.C
Scalar(s) (in a linear space) 256.A J
Scalarly integrable 443.FJ
Scalarly measurable 443.B I
Scale canonical 115.B
Scale matrix 374.C
Scale natural 260.G
Scale of Banach space 286.Z
Scale ordinal 397.M
Scale parameter 396.I 400.E
Scale two-sided 19.D
Scaled, 19.D
Scaling method 346.E
Scaling, metric multidimensional 346.E
Scaling, multidimensional 346.E
Scarf, Herbert Ely 173.E 227.r
Scatter diagram 397.H
Scattered (sheaf) 383.E
Scattered set 425.O
Scattered zeros, function with 208.C
Scattering 375.A
Scattering amplitude 375.C 386.B
Scattering amplitude partial wave 375.E
Scattering cross section 375.A
Scattering data 387.D
Scattering elastic 375.A
Scattering inelastic 375.A
Scattering operator 375.B F H
Scattering state 375.B
Scattering state completeness of the 150.D
Scattering theory, Haag — Ruelle 150.D
Scegoi’kov-Shchegoi’kov Schaaf, Manfred 258.r
Schade, J.P. 95.r
Schaefer, Helmut 217.r 310.A H
Schaeffer, Albert Charles 438.B C
Schafheitlin formula, Sonine- App. A Table
Schafheitlin, Paul App. A Table
Schafke, Friedrich Wilhelm 268.r 389.r
Schaible, Siegfried 264.r
Schapira, Pierre M. 112.D 125.Y 162
Schark, I.J. 164.I
Schatten, Robert 68.I
Schauder basis 37.L
Schauder degree, Leray- 286.D
Schauder estimate 323.C
Schauder fixed-point theorem 153.D 286.D
Schauder fixed-point theorem Leray- 286.D 323.D
Schauder theorem, Riesz- 68.E
Schauder, Juliusz Pawel 37.L 68.E 153.D 286.D 323.C D r r
Schechter, Martin 112 F H
Scheduling 376
Scheduling and production planning 376
Scheduling job-shop 307.C
Scheduling model 307.C
Scheduling network 307.C
Scheduling problem flow-shop 376
Scheduling problem job-shop 376
Scheduling problem machine 376
Scheduling problem multiprocessor 376
Scheffe model 346.C
Scheffe theorem, Lehmann- 399.C
Scheffe, Henry 102.r 346.C 399.C r
Scheffers, Georg 247.r
Scheifele, Gerhard 55.r
Scheinberg, Stephen 164.K
Scheja theorem 21.M
Scheja, Giinter 21.M r
Schema of Souslin 22.B
Scheme 16.D
Scheme adaptive 299.C
Scheme affine 16.D
Scheme Aitken’s interpolation 223.B
Scheme algebraic 16.D
Scheme automatic integration 299.C
Scheme coarse moduli 16.W
Scheme complete 16.D
Scheme consistent-mass 304.D
Scheme deformation of X over a connected 16.W
Scheme difference 304.E
Scheme difference, of backward type 304.F
Scheme difference, of forward type 304.F
Scheme explicit 304.F
Scheme fine moduli 16.W
Scheme formal 16.X
Scheme Friedrichs 304.F
Scheme group 16.H
Scheme Hilbert 16.S
Scheme implicit 304.F
Scheme integral 16.D
Scheme inverted filing 96.F
Scheme irreducible 16.D
Scheme K-complete 16.D
Scheme Lax-Wendroff 304.F
Scheme locally Noetherian formal 16.X
Scheme moduli 16.W
Scheme morphism of 16.D
Scheme Noetherian 16.D
Scheme nonadaptive 299.C
Scheme Over S 16.D
Scheme Picard 16.P
Scheme projective 16.E
Scheme quasiprojective 16.E
Scheme S- 16.D
Scherk, Heinrich Ferdinand 275.A
| Scherk, John 132.r
Scherk, Peter 4.A
Scherk’s surface 275.A
Schetzen, Martin 95.r
Schickard, Wilhelm 75.A
Schiffer, Menahem Max 77.E r C
Schiffman, M. 275.B
Schiitte, Kurt 97.* 156.E r
Schilling, Otto Franz Georg 257.r 439.r
Schlafli diagram (of a complex semisimple Lie algebra) 248.S
Schlafli formula App. A Table
Schlafli integral representation 393.B
Schlafli polynomial App. A Table
Schlafli, Ludwig 105.A 248.S 393.B App. A Tables IV
Schlaifer, Robert 398.r
Schlesinger equations 253.E
Schlesinger, Ludwig 253.E r
Schlessinger, Michael 16.r
Schlicht 438.A
Schlicht Bloch constant 77.F
Schlichtartig 367.G
Schlichting, Hermann 205.r 433.A
Schlieder theorem, Reeh- 150.E
Schlieder, Siegfried 150.E
Schlomilch criterion App. A Table
Schlomilch remainder, Roche- App. A Table
Schlomilch series 39.D App. Table
Schlomilch series generalized 39.D
Schlomilch, Otto 39.D App. A Tables 10.II 19.III
Schmeidler, David 173.D
Schmetterer, Leopold 399.N
Schmid, Hermann Ludwig 59.H
Schmid, Wilfried 16.r 437.W
Schmidt class, Hilbert- 68.I
Schmidt condition 379.M
Schmidt expansion theorem, Hilbert- 217.H
Schmidt norm, Hilbert- 68.I
Schmidt orthogonalization 317.A
Schmidt orthogonalization Gram- 317.A
Schmidt procedure, Lyapunov- 286.V
Schmidt theorem 118.D
Schmidt theorem, Knopp- 208.C
Schmidt theorem, Krull — Remak- (in group theory) 190.L
Schmidt type, integral operator of Hilbert- 68.C
Schmidt type, kernel of Hilbert- 217.I
Schmidt, Erhald 68.C I I
Schmidt, Friedrich Karl 12.B 59.G 450.P
Schmidt, Robert 208.C 379.M
Schmidt, Wolfgang M. 83.r 118.B D r r
Schnee theorem, Knopp- (on method of summation) 379.M
Schnee, Walter 379.M
Schneider, Michael 16.r
Schneider, Theodor 182.r 196 430.A B r
Schober, Glenn E. 438.r
Schoen, Richard M. 275.D F
Schoenberg, Isaac Jacob 178.A
Schoenfeld, Lowell 328
Schoenflies notation (for crystal classes) 92.E App.B Table
Schoenflies problem 65.G
Schoenflies theorem 65.G
Schoenflies, Arthur Moritz 47.r 65.G 92.E F K Table
Scholtz, Arnold 59.F
Schonfinkel, M. 97.*
Schonhage, Arnold 298.r
Schopf, Andreas 200.I
Schottky group 234.B
Schottky theorem 43.J
Schottky uniformization 367.C
Schottky, Friedrich Hermann 9.J 43.J 234.B 367.C
Schouten, Jan Arnoldus 109.* r
Schrader axioms, Osterwalder- 150.F
Schrader, Robert 150.F
Schreier conjecture (on simple groups) 151.I
Schreier extension, Artin- (of a field) 172.F
Schreier, Otto 7.r 28 151.A I N
Schroder equation, Konigs- 44.B
Schroder functional equation 388.D
Schroder, A. 156.B
Schroder, Friedrich Wilhelm Karl Ernst 44.B 388.D 411.A
Schrodinger equation 351.D
Schrodinger equation 1-body 351.E
Schrodinger equation random 340.E
Schrodinger equation time-dependent 351.D
Schrodinger equation time-independent 351.D
Schrodinger operator 351.D
Schrodinger picture 351.D
Schrodinger representation 351.C
Schrodinger series, Rayleigh- 331.D
Schrodinger, Erwin 331.A D D
Schubauer, G.B. 433.A
Schubert cycle 56.E
Schubert variety 56.E
Schubert, Hermann 56.E 201.r
Schubert, Horst 235.A
Schur index (of a central simple algebra) 29.E
Schur index (of an irreducible representation) 362.F
Schur lemma (on linear representations) 362.C
Schur lemma (on simple modules) 277.H 368.G
Schur lemma (on unitary representations) 437.D
Schur subgroup 362.F
Schur theorem (on linear transformations of sequences) 379.L
Schur theorem, Kojima- (on linear transformations of sequences) 379.L
Schur — Zassenhaus theorem (on Hall subgroups) 151.E
Schur, Friedrich Heinrich 364.D
Schur, Issai 29.E 43.J 122.C E F H r EE Table
Schuur, Jerry Dee 290.r
Schwank, Friedrich 217.r
Schwartz integral, Bartle — Dunford- 443.G
Schwartz space 424.S
Schwartz — Christoffel transformation 77.D App.A Table
Schwartz — Christoffel transformation formula 77.D
Schwartz, Arthur J. 126.I
Schwartz, Jacob Theodore 37.r 68.M 112.I O r r G r
Schwartz, Laurent 20.* r r B L r r S X r
Schwartz, Richard 280.r
Schwarz inequality 211.C
Schwarz inequality Cauchy- 211.C App. Table
Schwarz lemma 43.B
Schwarz principle of reflection 198.G
Schwarz, Hermann Amandus 11.D 43.B 77.D 106.H 109 198.G 211.C 246.B 275.B F Tables 9.III 13.III
Schwarzenberger, Rolph Ludwig Edward 92.r
Schwarzian derivative App. A Table
Schwarzschild, Karl 359.E
Schweber, Silvan Samuel 150.r
Schweitzer, Paul Alexander 126.N 154.D
Schwerdt, Hans 19.r
Schwinger equation, Lippmann- 375.C
Schwinger function 150.F
Schwinger points 150.F
Schwinger, Julian Seymour 132.C 146.A 150.A F
Scidmore, Allan K. 96.r
Sciences, information 75.F
Scipione del Ferro 360
Score test, Fisher — Yates — Terry normal 371.C
Scores canonical 397.M
Scores factor 280.G 346.F
Scoring method 397.M
Scott, Dana S. 33.E r
Scott, William Raymond 151.r
Screening, sampling inspection with 404.C
Searle, Shayle R. 403.r
Seasonal adjustment 397.N
Sebastiao e Silva, Jose 125.BB
Sec (secant) 131.E
Secant 432.A
Secant hyperbolic 131.F
Sech (hyperbolic secant) 131.F
Second (unit of an angle) 139.D
Second axiom, Tietze’s 425.Q
Second barycentric derived neighborhood 65.C
|
|
|
Реклама |
|
|
|