Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Polarization (on an Abelian variety) principal      3.G
Polarized (Hodge structure)      16.V
Polarized (wave)      446
Polarized Abelian variety      3.G
Polarized Jacobian variety, canonically      3.G 9.E
Pole (of a complex function)      198.D
Pole (of a function on an algebraic curve)      9.C
Pole (of a function on an algebraic variety)      16.M
Pole (of a polar of a quadric hypersurface)      158.E
Pole (of a polar plane)      350.C
Pole (of a polar with respect to a conic)      78.J
Pole (of a roulette)      93.H
Pole divisor (of a function on an algebraic variety)      16.M
Pole north (of a complex sphere)      74!)
Pole north (of a sphere)      140
Pole order of      198.D
Pole Regge      132.C 386.C
Pole resonance      331.F
Pole south (of a complex sphere)      74.D
Pole south (of a sphere)      140
Policy      127.A 405.C
Policy Markovian      405.C
Policy optimal      127.A
Polish space      22! 273.J
Polit, Stephen H.      136.E
Polkinghorne, John Charlton      146.r 386.C r
Pollaczek, Felix      145 307.C
Pollaczek-Geiringer, H.      298.r
Polonsky, Ivan P.      223.r 299.r
Polya type      374.J
Polya type strictly of      374.J
Polya, George      20.r 48.D r r
Polyakov, A. M.      80.r
Polya’s enumeration theorem      66.E
Polychromatic group      92.D
Polydisk      21.B
Polygamma functions      174.B App.
Polygon Cauchy      316.C
Polygon decomposition-equal      155.F
Polygon force      19.C
Polygon normal      234.C
Polygon plane      155.F
Polygon regular      357.A
Polygon simple      155.F
Polygon supplementation-equal      155.F
Polygon(s)      155.F
Polygonal number of order r      4.D
Polyharmonic      193.0
Polyhedral angle, regular      357.B
Polyhedral cone, convex      89.F
Polyhedral group, regular      151.G
Polyhedral, convex rational      16.Z
Polyhedron (polyhedra) (in an affine space)      7.D
Polyhedron (polyhedra) (ofasimplicial complex)      65.A 70.C
Polyhedron (polyhedra) analytic      21.G
Polyhedron (polyhedra) convex      89.A
Polyhedron (polyhedra) corner      215.C
Polyhedron (polyhedra) Euclidean      70.B
Polyhedron (polyhedra) Euler theorem on      201.F
Polyhedron (polyhedra) integer      215.C
Polyhedron (polyhedra) regular      357.B
Polyhedron (polyhedra) topological      65.A
Polymatroid      66.F
Polynomial Alexander (of a knot)      235.C D
Polynomial alternating      337.I
Polynomial approximation      336
Polynomial approximation best (in the sense of Chebyshev)      336.H
Polynomial approximation theorem (for $C^{\infty}$-functions)      58.E
Polynomial associated Laguerre      317.D
Polynomial Bernoulli      177.B
Polynomial Bernshtein      336.A
Polynomial Bernshtein (generalized)      418.H
Polynomial characteristic (of a differential operator)      112.A 321.A
Polynomial characteristic (of a linear mapping)      269.L
Polynomial characteristic (of a matrix)      269.F
Polynomial Chebyshev      317.D 336.H App. Table
Polynomial Chebyshev orthogonal      19.G
Polynomial cyclotomic      14.L
Polynomial differential      113
Polynomial distribution      App. A Table
Polynomial distribution negative      App. A Table
Polynomial Euler      177.C
Polynomial extrapolation method      303.F
Polynomial Fourier — Hermite      176.I
Polynomial Galois group of the      172.G
Polynomial Gegenbauer      317.D 393.E App. Table
Polynomial generalized trigonometric      18.B
Polynomial Hermite      317.D
Polynomial Hermite interpolation      223.E
Polynomial Hilbert (of a graded R-module)      369.F
Polynomial Hilbert (of a sheaf)      16.E
Polynomial Hilbert (of an algebraic curve)      9.F
Polynomial homogeneous of degree n      337.B
Polynomial Hosokawa      235.D
Polynomial identity (on an algebra)      29.J
Polynomial in m variables      337.B
Polynomial inseparable      337.G
Polynomial irreducible      337.F
Polynomial isobaric      32.C
Polynomial Jacobi      317.D App.A Table
Polynomial Lagrange interpolation      223.A 336.G App. Table
Polynomial Laguerre      317.D App. Table
Polynomial Legendre      393.B App. Table
Polynomial link      235.D
Polynomial Lommel      App. A Table
Polynomial minimal (of a linear mapping)      269.L
Polynomial minimal (of a matrix)      269.F
Polynomial minimal (of an algebraic element)      149.E
Polynomial monic      337.A
Polynomial Neumann      App. A Table
Polynomial Newton interpolation      336.G
Polynomial orthogonal      19.G App. Table
Polynomial parity check      63.E
Polynomial Poincare      201.B
Polynomial primitive      337.D
Polynomial reduced link      235.D
Polynomial reducible      337.F
Polynomial representation (of GL( V))      60.D
Polynomial ring      337.A 369
Polynomial ring of      337.A 369
Polynomial ring of differential      113
Polynomial ring of m variables      337.B
Polynomial Sato — Bernshtein      125.EE
Polynomial Schlafli      App. A Table
Polynomial separable      337.G
Polynomial simplest orthogonal      19.G
Polynomial Snapper      16.E
Polynomial Sonine      317.D App. Table
Polynomial symmetric      337.I
Polynomial system of orthogonal      317.D
Polynomial time      71.B
Polynomial trigonometric interpolation      336.E
Polynomial ultraspherical      317.D
Polynomial zonal      374.C
Polynomial(s)      337
Polynomially transformable      71.E
Polytropic differential equation      291.F
Pomeranchuk theorem      386.B
Pomeranchuk, Isaak Yakovlevich      386.B
Pommerenke, Christian      48.r 77.F 169.F 438.r
Poncelet, Jean-Victor      179.B 181 266 267
Pong, D.H.      345.A
Ponstein, J.      292.D
Pontryagin class combinatorial      56.H
Pontryagin class of a manifold      56.F
Pontryagin class rational      56.F
Pontryagin class total      56.D
Pontryagin class universal      56.D
Pontryagin class(es) (of an $\mathbf R^n$-bundle)      56.D
Pontryagin duality theorem (on topological Abelian groups)      192.K 422.C
Pontryagin multiplication      203.D
Pontryagin number      56.F
Pontryagin product      203.D
Pontryagin pth power operation      64.B
Pontryagin, Lev Seme’novich      2.G 56.D F H B F I r r U E r
Ponzano, Giorgio Enrico      146.A
Poor, Walter Andrew      178.r
Popov ghost, Faddeev-      132.C 150.G
Popov, M.V.      291.E
Popov, Viktor Nikolaevich      132.C 150.G
Popp, Herbert      16.W
Population (in statistics)      397.B 401.E
Population (in statistics)finite      373.A
Population (in statistics)infinite      401.E
Population characteristic      396.C
Population correlation coefficient      396.D
Population covariance      396.D
Population distribution      396.B 401.F
Population distribution hypothetical infinite      397.P
Population kurtosis      396.C
Population mean      396.C
Population moment of order k      396.C
Population standard deviation      396.C
Population variance      396.C
Port network, M-      282.C
Port, Sidney Charles      5.G
Port-admittance matrix      282.C
Port-impedance matrix      282.C
Porter      168.C
Porter, Alfred William      116.r
Portrait, phase      126.B
Position general (complexes)      70.B
Position general (in a projective space)      343.B
Position general (of a PL mapping)      65.D
Position general, theorem      65.D
Position hyperboloid      350.D
Position method of false      301.C
Position representation      351.C
Position vector      442.A
Position vector (of a point of an affine space)      7.A
Positive (chain complex)      200.C
Positive (class of vector bundles)      114.D
Positive (complex)      200.H
Positive (function on a C*-algebra)      308.D
Positive (functional on a C*-algebra)      36.G
Positive (Hermitian operation)      308.A
Positive (square matrix)      310.H
Positive boundary, open Riemann surface of      367.E
Positive completely (linear mapping between C*-algebras)      36.H
Positive cone, natural      308.K
Positive cycle (on an algebraic variety)      16.M
Positive definite (function)      192.B J
Positive definite (Hermitian form)      348.F
Positive definite (matrix)      269.I
Positive definite (on a topological group)      36.L 437.B
Positive definite (potential)      338.D
Positive definite (sequence)      192.B
Positive definite kernel      217.H
Positive definite quadratic form      348.C
Positive direction (in a curvilinear integral)      198.B
Positive distribution      125.C
Positive divisor (of an algebraic curve)      9.C
Positive divisor (on a Riemann surface)      11.D
Positive element (in a lattice-ordered group)      243.G
Positive element (of an ordered field)      149.N
Positive element strictly      310.H
Positive element totally      14.G
Positive entropy, completely      136.E
Positive half-trajectory      126.D
Positive infinity      87.D 355.C
Positive kernel      217.H
Positive limit point      126.D
Positive matrix      269.N
Positive number      355.A
Positive operator (in vector lattices)      310.E
Positive orientation (of an oriented $C^r$-manifold)      105.F
Positive orthant      89.G
Positive part (of an element of a vector lattice)      310.B
Positive prolongational limit set, first      126.D
Positive Radon measure      270.I
Positive real function      282.C
Positive recurrent ergodic class      260.B
Positive recurrent point      260.B
Positive root (of a semisimple Lie algebra)      248.M
Positive semidefinite (operator)      251.E
Positive semidefinite kernel      217.H
Positive semidefinite matrix      269.I
Positive semidefinite quadratic form      348.C
Positive semiorbit      126.D
Positive system, symmetric      112.S 326.D
Positive terms, series of      379.B
Positive type (function of)      192.B J
Positive type (sequence of)      192.B
Positive type (symmetric kernel of)      338.D
Positive variation (of a mapping)      246.H
Positive variation (of a real bounded function)      166.B
Positive Weyl chamber      248.R
Positively invariant      126.D
Positively Lagrange stable      126.E
Positively Poisson stable      126.E
Positively regular process      44.C
Positivity O-S      150.F
Positivity reflection      150.F
Positivity T-      150.F
Possibility      411.L
Possible construction problem      179.A
Post problem      356.D
Post theorem      356.H
Post, Emil Leon      31.B 75.D 97.r 161.B 240.D 356.A D H r
Posterior density      401.B
Posterior distribution      398.B 401.B 403.G
Posterior risk      399.F
Postliminal C*-algebra      36.H
Postnikov complex      70.G
Postnikov system (of a CWcomplex)      148.D
Postnikov, Aleksei Georgievich      295.E 328.* r
Postnikov, Mikhail Mikhailovich      70.G 148.D172.r 305.A
Poston, Tim      51.r
Postulate fifth (in Euclidean geometry)      139.A
Postulate Nernst      419.A
Postulate Peano      294.B
Postulate(s)      35.A
Potency of a set      49.A
Potential      338.A
Potential (for a lattice spin system)      402.G
Potential (in a Markov chain)      260.D
Potential (of a force)      271.C
Potential (of a Hamiltonian)      375.B
Potential (on a network)      281.B
Potential central      351.E
Potential chemical      402.D 419.B
potential energy      271.G
Potential equilibrium      260.D
Potential finite-band      387.E
Potential finite-gap      387.E
Potential good reduction (of an Abelian variety)      3.N
Potential kernel, weak      260.D
Potential logarithmic      338.A
Potential Newtonian      271.C 338.A
Potential of a double distribution      338.A
Potential of a double layer      338.A
Potential of a simple distribution      338.A
Potential of a single layer      338.A
Potential of order $\alpha$      338.B
Potential reflectionless      387.D
Potential Riesz      338.B
Potential scalar      130.A 442.D
Potential stable reduction (of an Abelian variety)      3.N
Potential theory      338
Potential vector      130.A 442.D
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте