Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Regular mapping (between prealgebraic varieties)      16.C
Regular mapping of class $C^1$      208.B
Regular matrix      269.B
Regular measure      270.F
Regular measure $\mathscr B$-      270.F
Regular measure K-      270.F
Regular n-gon      357.A
Regular neighborhood      65.C
Regular neighborhood system      65.C
Regular of the hth species      343.E
Regular outer measure      270.E
Regular perturbation      331.D
Regular point (for a Hunt process)      261.D
Regular point (in catastrophe theory)      51.F
Regular point (of a differentiable mapping)      105.J
Regular point (of a diffusion process)      115.B
Regular point (of a polyhedron or cell complex)      65.B
Regular point (of a surface in $E^3$)      111.J
Regular point semi- (of a surface in $E^3$)      111.J
Regular polygon      357.A
Regular polyhedra      357.B
Regular polyhedral angle      357.B
Regular polyhedral group      151.G
Regular positive Radon measure      270.H
Regular process, positively      44.C
Regular projective transformation      343.D
Regular representation (of a group)      362.B
Regular representation (of a locally compact group)      69.B
Regular representation (of a topological transformation group)      437.A
Regular representation left (of a group)      362.C
Regular representation left (of an algebra)      362.C
Regular representation right (of a group)      362.E
Regular representation right (of an algebra)      362.E
Regular ring      284.D
Regular ring (continuous geometry)      85.B
Regular sequence (of Lebesgue measurable sets)      380.D
Regular singular point      254.B
Regular singularity (of a coherent if-module)      274.H
Regular solution (of a differential ideal)      428.E
Regular space      425.Q
Regular space completely      425.Q
Regular submanifold (of a $C^{\infty}$-manifold)      105.L
Regular system of algebraic equations      10.A
Regular system of parameters (of a local ring)      284.D
Regular transformation (of a linear space)      256.B
Regular transformation (of a sequence)      379.L
Regular transformation totally (of a sequence)      379.L
Regular tube      193.K
Regular value      105.J
Regularity abscissa of (of a Dirichlet series)      121.B
Regularity axiom of (in axiomatic set theory)      33.B
Regularity parameter of (of a Lebesgue measurable set)      380.D
Regularity up to a boundary      112.F
Regularization (of a distribution)      125.M
Regularizing (kernel)      125.L
Regularly convex set      89.G
Regularly homotopic (immersion)      114.D
Regularly hyperbolic (partial differential equation)      325.A F
Regulator (of an algebraic number field)      14.D
Regulator (of an algebraic number field)p-adic      450.J
Regulator problem, optimal      80.F
Reich, Edgar      352.C
Reid, Constance      196.r
Reid, John Ker      302.r
Reid, Miles A.      16.r
Reidemeister, Kurt Werner Friedrich      91.r 155.r 235.A r
Reif, Frederick      402.r
Reifenberg, E.R.      275.A G
Reilly, Robert C.      365.H
Reiner, Irving      29.r 92.r 151.r 277.r 362.r
Reinhardt domain      21.B
Reinhardt domain complete      21.B
Reinhardt, Hans      59.F
Reinhardt, Karl      21.B Q
Reinsch, C.      298.r 300.r
Reiteration theorem      224.D
Rejection      400.A
Related differential equation      254.F
Relation (among elements of a group)      190.C
Relation (among the generators of a group)      161.A
Relation Adem (for Steenrod pth power operations)      64.B
Relation Adem (for Steenrod square operations)      64.B
Relation analytic, invariance theorem of      198.K
Relation antisymmetric      358.A
Relation binary      358.A 411.G
Relation canonical anticommutation      377.A
Relation canonical commutation      351.C 377.A C
Relation coarser      135.C
Relation defining (among the generators of a group)      161.A
Relation dispersion      132.C
Relation equivalence      135.A 358.A
Relation Euler      419.B
Relation finer      135.C
Relation Fuchsian      253.A
Relation functional (among components of a mapping)      208.C
Relation functional, of class $C^r$      208.C
Relation fundamental (among the generators of a group)      161.A419.A
Relation Gibbs — Duhem      419.B
Relation Heisenberg uncertainty      351.C
Relation Hurwitz (on homomorphisms of Abelian varieties)      3.K
Relation identity      102.I
Relation incidence      282.A
Relation inverse      358.A
Relation Legendre      134.F App. Table
Relation Maxwell      419.B
Relation n-ary      411.G
Relation normal commutation      150.D
Relation order      311.A
Relation orthogonality (for square integrable unitary representations)      437.M
Relation orthogonality (on irreducible characters)      362.G
Relation period      11.C
Relation Pluecker (on Pliicker coordinates)      90.B
Relation prey-predator      263.B
Relation proper equivalence (in an analytic space)      23.E
Relation Rankine — Hugoniot      204.G 205.B
Relation reciprocity, Onsager’s      402.K
Relation reflexive      358.A
Relation Riemann period      3.111.C
Relation Riemann — Hurwitz      367.B
Relation stronger      135.C
Relation symmetric      358.A
Relation transitive      358.A
Relation weaker      135.C
Relation(s)      358
Relationship algebra      102.J
Relative (of a prime ideal over a field)      14.I
Relative Alexander cohomology group      201.M
Relative algebraic number field      14.I
Relative boundary      367.B
Relative Bruhat decomposition      13.Q
Relative Cech cohomology group      201.M
Relative Cech homology group      201.M
Relative chain complex      200.C
Relative cochain complex      200.F
Relative cohomology group      215.W
Relative complement (at two sets)      381.B
Relative components (of a Lie transformation group)      110.A
Relative consistency      156.D
Relative degree (of a finite extension)      257.D
Relative degree (of a prime ideal over a field)      14.I
Relative derived functor      200.K
Relative different      14.J
Relative discriminant      14.J
Relative entropy      212.B
Relative extremum, conditional      106.L
Relative frequency (of samples)      396.C
Relative homological algebra      200.K
Relative homotopy group      202.K
Relative integral invariant      219.A
Relative integral invariant Cartan’s      219.B
Relative invariant      12.A 226.A
Relative invariant measure      225.H
Relative maximum (of a function)      106.L
Relative Mayer — Vietoris exact sequence      201.L
Relative minimum (of a function)      106.L
Relative neighborhood      425.J
Relative norm (of a fractional ideal)      14.I
Relative nullity, index of      365.D
Relative open set      425.J
Relative ramification index (of a prime ideal over a field)      14.I
Relative singular homology group      201.L
Relative stability      303.G
Relative stability interval of      303.G
Relative stability region of      303.G
Relative topology      425.J
Relative uniform star convergence      310.F
Relative uniformity      436.E
Relatively ample sheaf      16.E
Relatively bounded (with respect to a linear operator)      331.B
Relatively closed set      425.J
Relatively compact (maximum likelihood method)      399.M
Relatively compact (set)      425.S
Relatively compact (subset)      273.F
Relatively compact (with respect to a linear operator)      331.B
Relatively dense      126.E
Relatively invariant measure      225.H
Relatively minimal      15.G 16.I
Relatively minimal model      15.G
Relatively open set      425.J
Relatively prime (fractional ideals)      14.E
Relatively prime (numbers)      297.A
Relatively stable      303.G
Relativistically covariant      150.D
Relativity general principle of      359
Relativity general theory of      359.A
Relativity special principle of      359
Relativity special theory of      359.A
Relativization (of a definition of primitive recursive functions)      356.B
Relativization (of a topology)      425.J
Relativization (of a uniformity)      436.E
Relativized      356.F
Relaxation      215.A
Relaxation oscillation      318.C
Relaxation with projection      440.E
Relaxed continuity requirements, variational principles with      271.G
Rellich lemma      68.C
Rellich theorem      323.G
Rellich uniqueness theorem      188.D
Rellich — Dixmier theorem      351.C
Rellich — Kato theorem      331.B
Rellich, Franz      68.C 188.D 323.G 331.A B
Remainder      297.A 337.C
Remainder (in Taylor’s formula)      106.E
Remainder Cauchy      App. A Table
Remainder Lagrange      App. A Table
Remainder theorem      337.E
Remainder theorem Chinese      297.G
Remak — Schmidt theorem, Krull- (in group theory)      190.L
Remak, Robert      190.L 277.I
Remes, E.      142.B
Remmert theorem      23.C
Remmert — Stein continuation theorem      23.B
Remmert, Reinhold      20 21.M Q r r
Remoundos, Georgios      17.A C r
Removable (set for a family of functions)      169.C
Removable singularity (of a complex function)      198.D
Removable singularity (of a harmonic function)      193.L
Renaissance mathematics      360
Renewal equation      260.C
Renewal Theorem      260.C
Rengel, Ewald      77.E
Renormalizable      111.B 132.C 150.C
Renormalizable super      150.C
Renormalization constant      150.C
Renormalization equation      111.B
Renormalization group      111.A
Renormalization method      111.A
Renyi theorem      123.E
Renyi, Alfred      4.C 123.E
Reoriented graph      186.B
Repeated integral (for the Lebesgue integral)      221 E
Repeated integral (for the Riemann integral)      216.G
Repeated series by columns      379.E
Repeated series by rows      379.E
Replacement, axiom of      33.B 381.G
Replacement, model      307.C
Replica      13.C
Replication      102.A
Replication number of      102.B
Represent (a functor)      52.L
Represent (an ordinal number)      81.B
Representable (functor)      52.L
Representable linearly (matroid)      66.H
Representation (of a Banach algebra)      36.D
Representation (of a Jordan algebra)      231.C
Representation (of a knot group)      235.E
Representation (of a lattice)      243.E
Representation (of a Lie algebra)      248.B
Representation (of a mathematical system)      362.A
Representation (of a vector lattice)      310.D
Representation (of an algebraic system)      409.C
Representation absolutely irreducible      362.F
Representation adjoint (of a Lie algebra)      248.B
Representation adjoint (of a Lie group)      249.P
Representation adjoint (of a representation)      362.E
Representation analytic (of GL(V))      60.B
Representation canonical (of Gaussian processes)      176.E
Representation completely reducible      362.C
Representation complex (of a Lie group)      249.O
Representation complex conjugate      362.F
Representation conjugate      362.F
Representation contragredient      362.E
Representation coregular (of an algebra)      362.E
Representation cyclic (of a C*-algebra)      36.G
Representation cyclic (of a topological group)      437.A
Representation differential (of a unitary representation of a Lie group)      437.S
Representation direct sum of      362.C
Representation double-valued      258.B
Representation dual      362.E
Representation equivalent      362.C
Representation factor (of a topological group)      437.E
Representation factor, of type      I II or
Representation faithful      362.B
Representation Fock      150.C
Representation Gel’fand (of a commutative Banach algebra)      36.E
Representation generalized canonical (of Gaussian processes)      176.E
Representation generating (of a compact Lie group)      249.U
Representation half-spin (even, odd)      61.E
Representation Herglotz’s integral      43.I
Representation in terms of arc length (of a continuous arc)      246.A
Representation induced      362.G
Representation induced (of a finite group)      362.G
Representation induced (of a unitary representation of a subgroup)      437.O
Representation integral (of a group)      362.G K
Representation integral, Cauchy’s      21.C
Representation irreducible (of a Banach algebra)      36.D
Representation irreducible (of an algebra or a group)      362.C
Representation irreducible projective      362.J
Representation isomorphic      362.C
Representation isotropy      431.C
Representation Kallen — Lehmann      150.D
Representation kernel (of a Green’s operator)      189.B
Representation l-adic      3.E
Representation Lax      287.B C
Representation left regular (of a group)      362.B
Representation list      186.D
Representation Mandelstam      132.C
Representation matrix      362.D
Representation modular (of a finite group)      362.G
Representation module (of a linear representation)      362.C
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте