Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Module (of a family of curves)      143.A
Module (R, S)-injective      200.K
Module (R, S)-projective      200.K
Module A-      277.C
Module Artinian      277.I
Module category of left (right) R-      52.B
Module character (of an algebraic group)      13.D
Module coefficient      200.L
Module cohomology      200.F
Module connected graded      203.B
Module defining (of a linear system)      16.N
Module degenerate      118.D
Module divisible A-      277.D
Module dual      277.K
Module dual graded      203.B
Module duality theorem for $\Omega$-      422.L
Module factor A-      277.C
Module faithfully flat A-      211.K
Module flat A-      277.K
Module free      277.G
Module generalized      143.B
Module graded A-      200.B
Module homology      200.C
Module induced      277.L
Module injective A-      277.K
Module Jordan      231.C
Module left A-      277.D
Module Noetherian      277.I
Module of A-homomorphisms (between A-modules)      277.E
Module of boundaries      200.C
Module of coboundaries      200.F
Module of cocycles      200.F
Module of cycles      200.C
Module of finite length      277.I
Module of homomorphisms (between two modules)      277.B
Module of quotients of an R-module with respect to S      67.G
Module of representations (of a compact group)      69.D
Module over A      211.C
Module projective A-      211 K
Module representation (of a linear representation)      362.C
Module right A-      277.D
Module torsion A-      211.T)
Module with operator domain A      277.C
Module(s)      277
Moduli functor      16.W
Moduli scheme      16.W
Moduli scheme coarse      16.W
Moduli scheme fine      16.W
Moduli space      16.W 72.G
Moduli space local      72.G
Moduli space of curves of genus g      9.J
Modulus (moduli) (= a conformal invariant)      11.B 77.E
Modulus (moduli) (in Jacobi elliptic functions)      134.J App. Table
Modulus (moduli) (of a complex number)      74.B
Modulus (moduli) (of a complex torus of dimension 1)      32.C
Modulus (moduli) (of a congruence)      297.G
Modulus (moduli) (of a locally multivalent function)      438.E
Modulus (moduli) (of a ring)      77.E
Modulus (moduli) (of an elliptic integral)      134.A App. Table
Modulus (moduli) complementary (in Jacobi elliptic functions)      134.J App. Table
Modulus (moduli) complementary (of an elliptic integral)      App. A Table
Modulus (moduli) field of      73.B
Modulus (moduli) local maximum, principle      164.C
Modulus (moduli) maximum, principle (for a holomorphic function)      43.B
Modulus (moduli) of continuity (of a function)      84.A
Modulus (moduli) of continuity of fcth order (of a continuous function)      336.C
Modulus (moduli) of elasticity in shear      271.G
Modulus (moduli) of elasticity in tension      271.G
Modulus (moduli) of rigidity      271.G
Modulus (moduli) periodicity (of an elliptic integral)      134.A
Modulus (moduli) Young’ s      271.G
Modulus number      418.E
modus ponens      411.I
Moedomo, S.      443.H
Mohr, Georg      179.B
Moise, Edwin Evariste      65.C 70.C 79.D 93.r 139.r 410.r
Moiseiwitsch, Benjamin Lawrence      441.r
Moishezon criterion, Nakai- (of ampleness)      16.E
Moishezon, Boris Gershevich      16.E U W
Molchanov, Stanislav Alekseevich      115.D 340.r
Moldestad, Johan      356.F r
Mole numbers      419.A
Moler, Cleve B.      298.r 302.r
Molshezon space      16.W
moment      397.C
Moment (kth)      341.B
Moment about the mean (kth)      341.B
Moment absolute (feth)      341.B
Moment bivariate      397.H
Moment central      397.C
Moment conditonal      397.I
Moment factorial      397.G
Moment generating function      177.A 341.C 397.G J
Moment matrix      341.B
Moment method      399.L
Moment method estimator      399.L
Moment of inertia      271.E
Moment population (of order k)      396.C
Moment principal, of inertia      271.E
Moment problem Hamburger      240.K
Moment problem Hausdorff      240.K
Moment problem Stieltjes      240.K
Moment sample (of order k)      396.C
Momentum      271.A E
Momentum 4-vector, energy-      258.C
Momentum angular      271.E
Momentum density, angular      150.B
Momentum generalized      271.F
Momentum integrals of angular      420.A
Momentum intrinsic angular      351.G
Momentum operator angular      258.D
Momentum operator energy-      258.D
Momentum orbital angular      351.E
Momentum phase space      126.L
Momentum representation      351.C
Momentum tensor angular      258.D
Momentum tensor energy-      150.D 359.D
Momentum theorem of      271.E
Momentum theorem of angular      271.E
Monad (in homology theory)      200.Q
Monad (in nonstandard analysis)      293.D
Monge differential equation      324.F
Monge — Ampere equations      278 App. Table
Monge, Gaspard      107.B 109 158 181 255.E 266 267 278.A 324.F
Monic polynomial      337.A
Monin, Andrei Sergeevich      433.r
Monoclinic system      92.E
Monodromy group (of a system of linear ordinary differential equations)      253.B
Monodromy group (of an n-fold covering)      91.A
Monodromy group Milnor      418.D
Monodromy group total      418.F
Monodromy matrix      254.B
Monodromy theorem (on analytic continuation)      198.J
Monogenic function in the sense of Cauchy      198.Q
Monogenic function in the sense of E.Borel      198.Q
Monoid, unitary      409.C
Monoidal transformation (by an ideal sheaf)      16.K
Monoidal transformation (of a complex manifold)      172.H
Monoidal transformation (of an analytic space)      23.D
Monoidal transformation real      274.E
Monoidal transformation with center W      16.K
Monomial      337.B
Monomial (module)      277.D
Monomial admissible (in Steenrod algebra)      64.B
Monomial representation (of a finite group)      362.G
Monomorphism (in a category)      52.D
Monothetic group      136.D
Monotone (curve)      281.B
Monotone class      270.B
Monotone class theorem      270.B
Monotone decreasing (set function)      380.B
Monotone decreasing function      166.A
Monotone decreasing function strictly      166.A
Monotone decreasing matrix, of order m      212.C
Monotone function      166.A
Monotone function matrix, of order m      212.C
Monotone function strictly      166.A
Monotone function strictly (of ordinal numbers)      312.C
Monotone increasing (set function)      380.B
Monotone increasing function      166.A
Monotone increasing function strictly      166.A
Monotone likelihood ratio      374.J
Monotone mapping      311.E
Monotone operator      212.C
Monotone operator (in a Hilbert space)      286.C
Monotone sequence (of real numbers)      87.B
Monotonely very weak Bernoulli      136.F
Monotonic function, completely      240.E K
Monotonically decreasing (sequence of real numbers)      87.B
Monotonically increasing (sequence of real numbers)      87.B
Monte Carlo method      385.C
Montel space      424.O
Montel theorem      435.E
Montel, Paul Antoine Aristide      272.F 424.O 435.E r
Montgomery, Deane      196 249.V r
Montgomery, Hugh L.      14.L 123.E r
Montucla, Jean Etienne      187.r
Mook, Dent T.      290.r
Moon argument, behind-the-      351.K
Moon, Philip Burton      130.r
Moore space      273.K 425.AA
Moore space problem, normal      425.AA
Moore — Smith convergence      87.H
Moore, Calvin C.      122.F
Moore, Eliakim Hastings      87.H K r
Moore, John Colemar      147.r 200.r 203.r
Moore, John Douglas      365 J
Moore, Robert Lee      65.F 273.K 425.AA 426
Moran, Patrick Alfred Pierce      218.r
Morawetz, Cathleen Synge      112.S 345.A
Mordell conjecture      118.E
Mordell — Weil theorem      118.E
Mordell — Weil theorem weak      118.E
Mordell, Louis Joel      118.A E
More informative (experiment)      398.G
Morera theorem      198.A
Morera, Giacinto      198.A
Morf, Martin      86.r
Morgan, Frank      275.C
Morgenstern solution, von Neumann-      173.D
Morgenstern, Oskar      173.A D
Mori, Akira      352.B C
Mori, Hiroshi      275.F
Mori, Mitsuya      59.H
Mori, Shigefumi      16.R r
Mori, Shinziro      284.G
Mori, Shin’ichi      207.C r
Moriguti, Sigeiti      299.B 389.r
Morimoto, Haruki      399.r
Morimoto, Hiroko      224.F
Morimoto, Mituo      125.BB DD
Morimune, Kimio      128.C
Morishima, Taro      145.*
Morita, Kiiti      8 117.A C E r X-Z CC
Morita, Masato      353.r
Morita, Reiko      353.r
Morita, Shigeyuki      154.G
Morita, Yasuo      450.U
Moriya, Mikao      59.G H
Morlet, Claude      147.Q
Morley, Edward Williams      359.A
Morley, Michael      276.F r
Morphism (in a category)      52.A
Morphism (of chain complexes)      200.H
Morphism (of complexes)      13.R
Morphism (of filtered modules)      200.J
Morphism (of inductive systems)      210.D
Morphism (of unfoldings)      51.D
Morphism affine      16.D
Morphism connecting      200.H
Morphism diagonal (in a category)      52.E
Morphism etale      16.F
Morphism faithfully flat      16.D
Morphism finite      16.D
Morphism flat      16.D
Morphism Frobenius      450.P
Morphism functorial      52.J
Morphism inverse      52.D
Morphism k- (between algebraic groups)      13.A
Morphism of schemes      16.D
Morphism proper (between schemes)      16.D
Morphism protective      16.E
Morphism quasiprojective      16.E
Morphism S-      52.G
Morphism separated      16.D
Morphism shape      382.A
Morphism smooth      16.F
Morphism strict (between topological groups)      423.J
Morphism structure      52.G
Morrey, Charles Bradfield, Jr.      46.r 78.r 112.D 125.A 194.F r C r
Morris, Peter D.      443.H
Morrow, James      72.K
Morse function      279.B
Morse index theorem      279.F
Morse inequalities      279.D
Morse lemma      279.B
Morse theory      279
Morse theory fundamental theorems of      279.D
Morse — Smale diffeomorphism      126.J
Morse — Smale flow      126.J
Morse — Smale vector field      126J
Morse, Harold Marston      109 114.A F Q r
Morse, Philip McCord      25.r 133.r 227.r
Morton, Keith W.      304.r
Moschovakis, Yiannis Nicholas      22.D F H r r
Moser implicit function theorem, Nash-      286.J
Moser, Jurgen      21.P 55.r 126.A L r r G
Moser, William, O.J.      92.r 122.r 151.r 161.r
Mosher, Robert E.      64.r 70.r
Most powerful (test)      400.A
Most probable cause      401.E
Most probable value      401.E
Most stringent level a test      400.F
Mosteller model Bush-      346.G
Mosteller model Thurstone-      346.C
Mosteller, Frederick      346.C G
Mostow, George Daniel      13.r 32.r 122.F G
Mostowski, Andrzej      33.D r H
Motion $\{\mathscr F_t\}$-Brownian      45.B 406.B
Motion (Euclidean)      139.B
Motion Brownian      5.D 45 342.A
Motion Brownian (d-dimensional)      45.C
Motion Brownian, on Lie groups      406.G
Motion Brownian, with an N-dimensional time parameter      45.I
Motion central      126.E
Motion elliptic      55.A
Motion equation of (of a fluid)      205.A
Motion equation of (of a particle in a gravitation field)      359.D
Motion equations of (in Newtonian mechanics)      271.A
Motion Euler equation of (of a perfect fluid)      205.B
Motion group of (in Euclidean geometry)      139.B
Motion group of, in the wider sense      139.B
Motion Heisenberg equation of      351.D
Motion hyperbolic      420.D
Motion hyperbolic-elliptic      420.D
Motion hyperbolic-parabolic      420.D
Motion infinitesimal (of a Riemannian manifold)      364.F
Motion Lagrange equation of      271.F
Motion Lagrange-stable      420.D
Motion law of      271.A
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте