Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Magnetic induction      130.A
Magnetic permeability      130.B
Magnetic polarization      130.A
Magnetic quantum number, orbital      351.E
Magnetic Reynolds number      259
magnetic susceptibility      130.B
Magnetic wave      130.B
Magnetic wave transverse      130.B
Magnetofluid dynamics      259
Magnetohydrodynamics      259
Magnetostatics      130.B
Magnitude (of a vector)      442.B
Magnus, Wilhelm      161.B r Table
Mahalanobis generalized distance      280.E
Mahalanobis, Prasanta Chandra      280.E
Mahler, Kurt      182.r 430.B C
Mahlo, p.      33.r
Main classes      241.A
Main effect      102.H
Main theorem (in class field theory)      59.C
Main theorem Zariski’s      16.I
Mainardi equations, Codazzi-      111.H App. Table
Mainardi, Gaspare      111.H App. A Table
Maitra, Ashok P.      22.E 396.r
Majima, Hideyuki      428.H
Major arc      4.B
Major axis (of an ellipse)      78.C
Major function      100.F
Majorant (of a sequence of functions)      435.A
Majorant harmonic (of a subharmonic function)      193.S
Majorant method of      316.G
Majorant series      316.G 435.A
Majorizing function, right      316.E
Makarov, Vitalii Sergeevich      122.G
Malcolm, Donald G.      376.r
Malfatti problem (in geometric construction)      179.A
Malfatti. Gian Francesco      179.A
Malgrange theorem, Ehrenpreis-      112.B
Malgrange, Bernard      58.C E C R
Malliavin, Paul      115.D r r
Malmquist, Johannes      254.D 288.B C r
Malus theorem      180.A
Malus, Etienne Louis      180.A
Mal’tsev theorem, Wedderburn- (on algebras)      29.F
Mal’tsev — Iwasawa theorem, Cartan- (on maximal compact subgroups)      249.S
Mal’tsev, Anatolii Ivanovich      29.F 249.S 276.D
Mandelbaum, Richard      114.r
Mandelbrojt, Szolem      58.F 134.C r r
Mandelbrot, Benoit B.      246.K 433.r
Mandelstam representation      132.C
Mandelstam, Stanley      132.C
Mane, Ricardo      126.J
Mangasarian, Olvi L.      292.D r
Mangoldt function      123.B
Mangoldt, Hans Carl Friedrich von      123.B 450.B
Manifold $C^r$-      105.D
Manifold $C^r$-, with boundary      105.E
Manifold $C^r$-, without boundary      105.E
Manifold $SC^P$-      178.G
Manifold $\pi$-      114.I
Manifold almost contact      110.E
Manifold almost parallelizable      114.I
Manifold at a point      178.G
Manifold Banach      105.Z 286.K
Manifold Blaschke manifold      178.G
Manifold center, theorem      286.V
Manifold characteristic (of a partial differential equation)      320.B
Manifold characteristic classes of      56.F
Manifold closed      105.B
Manifold coherently oriented pseudo-      65.B
Manifold combinatorial      65.C
Manifold compact C-      105.D
Manifold complex analytic      72.A
Manifold conic Lagrange      345.B
Manifold conic Lagrangian      274.C
Manifold contact      110.E
Manifold covering      91.A
Manifold covering differentiable      91.A
Manifold differentiable, of class $C^r$      105.D
Manifold differentiable, with boundary of class $C^r$      105.E
Manifold fibered      428.F
Manifold Finsler      286.L
Manifold flag      199.B
Manifold Frechet      286.K
Manifold G-      431.C
Manifold group (of a Lie transformation)      110.A
Manifold h-cobordant oriented      114.I
Manifold Hilbert      105.Z 286.K
Manifold Hodge      232.D
Manifold homology      65.B
Manifold Hopf      232.E
Manifold hyperbolic      21.O 235.E
Manifold integral      428.A B D
Manifold irreducible 3-      65.E
Manifold k-dimensional integral      191.I
Manifold Kaehler      232
Manifold nontrivial 3-      65.E
Manifold ordinary integral (of a differential ideal)      428.E
Manifold orientable ($C^r$-manifold)      105.F
Manifold orientation      201.N
Manifold oriented      105.F 201.N
Manifold oriented G-      431.E
Manifold paracompact $C^r$-      105.D
Manifold parallelizable      114.I
Manifold PL-      65.C
Manifold Poincare      105.A
Manifold prime 3-      65.E
Manifold proper flag      199.B
Manifold pseudo-      65.B
Manifold pseudo-Hermitian      344.F
Manifold Q-      382.D
Manifold real analytic      105.D
Manifold regular integral (of a differential ideal)      428.E
Manifold s-parallelizable      114.I
Manifold singular integral (of a differential ideal)      428.E
Manifold smooth      105.D 114.B
Manifold space-time      359.D
Manifold stable      126.G J
Manifold stably almost complex      114.H
Manifold stably parallelizable      114.I
Manifold Stein      21.L
Manifold symplectic      219.C
Manifold topological      105.B
Manifold triangulated      65.B
Manifold unstable      126.G.J
Manifold visibility      178.F
Manifold weakly 1-complete      21.L
Manifold weakly almost complex      114.H
Manifold with a handle attached by f      114.F
Manifold with boundary      105.B
Manifold with Euclidean connection      109
Manifold without boundary      105.B
Manifold(s) almost complex      72.B
Manin connection, Gauss- (of a variety)      16.V
Manin, V. G.      80.r
Manin, Yuril Ivanovich      16.J V M
Mann — Whitney L’-test      371.C
Mann, Henry Berthold      4.A 371.A C421.r
Mann, Larry N.      364.F
Manna, Zohar      75.r
Mannheim curve      111.F
Mannheim, Amedee      111.F
Manning, Anthony Kevin      51.r 126.J K
MANOVA (multtvariate analysis of variance)      280.B
Mansfield, Richard B.      22.F
Mantissa (of the common logarithm)      131.C
Many body problem      402.F 420.A
Many-valued (analytic function)      198.J
Many-valued function      165.B
Many-valued logic      411.L
MAP      381.C
Map bundle      147.B
Map covering      91.A
Map cubic      157.B
Map equivariant      431.A
Map first-return      126.C
Map G-      431.A
Map Gauss      111.G
Map Kodaira — Spencer      72.G
Map linear fiber      114.D
Map normal      114.J
Map PL      65.A
Map Poincare      126.C
Map time-one      126.C
Map trivalent      157.B
Mapping      381.C
Mapping $C^r$-      105.J
Mapping $c_1$-      237.G
Mapping A-balanced      277.J
Mapping affine      7.E
Mapping alternating multilinear      256.H
Mapping analytic      21.J
Mapping antiholomorphic      195.B
Mapping antisymmetric multilinear      256.H
Mapping biadditive      277.J
Mapping biholomorphic      21.J
Mapping bijective      381.C
Mapping bilinear      256.H 277.J
Mapping birational      16.I
Mapping biregular (between prealgebraic varieties)      16.C
Mapping Borel isomorphic      270.C
Mapping bundle      147.B
Mapping CE      382.D
Mapping cellular (between cell complexes)      70.D
Mapping chain      200.C
Mapping chain (between chain complexes)      201.B
Mapping characteristic (in the classification theorem of fiber bundles)      147.G
Mapping class      202.B
Mapping classifying      147.G
Mapping closed      425.G
Mapping cochain      200.F 201.H
Mapping complete      241.C
Mapping cone      202.E
Mapping cone reduced      202.F
Mapping conformal      198.A
Mapping conjugation (of a Hopf algebra)      203.E
Mapping constant      381.C
Mapping continuous      425.G
Mapping covering      91.A
Mapping cylinder      202.E
Mapping degenerate      208.B
Mapping degree      99.A
Mapping degree of      99.A
Mapping diagonal (of a graded coalgebra)      203.B F
Mapping differentiable, of class $C^r$      105.J
Mapping dual (of a linear mapping)      256.G
Mapping duality      251.J
Mapping equivariant      431.A
Mapping essential      202.B
Mapping exponential      178.A 249.Q 364.C
Mapping extremal horizontal slit      367.G
Mapping extremal quasiconformal      352.C
Mapping extremal vertical slit      367.G
Mapping first-return      126.C
Mapping Fredholm      286.E
Mapping G-      362.B 431.A
Mapping Gauss (in geometric optics)      180.B
Mapping generalized conformal      246.I
Mapping harmonic      195.B
Mapping hereditarily quotient      425.G
Mapping holomorphic      21.J 72.A
Mapping homological      200.C
Mapping homotopy-associative      203.D
Mapping Hopf      147.E
Mapping identity      381.C
Mapping inclusion      381.C
Mapping inverse      381.C
Mapping inverse, theorem      208.B
Mapping isometric      111.H 273.B
Mapping Kodaira — Spencer      72.G
Mapping linear (between linear spaces)      256.B
Mapping linear (between polyhedrons)      70.C
Mapping linear fiber      114.D
Mapping local degree of      99.B
Mapping meromorphic      23.D
Mapping monotone      311.E
Mapping multilinear      256.H
Mapping nondegenerate holomorphic (between analytic spaces)      23.C
Mapping nonexpansive      286.B
Mapping nonsingular, of class $C^1$      208.B
Mapping normal      114.J
Mapping normal coordinate      364.C
Mapping of bounded variation      246.H
Mapping of class $C^r$      208.B
Mapping of group algebra      192.Q
Mapping one-to-one      381.C
Mapping onto      381.C
Mapping open      425.G
Mapping order-preserving      311.E
Mapping orientation-preserving      99.A
Mapping orientation-reversing      99.A
Mapping partial (of a mapping)      381 C
Mapping perfect      425.W
Mapping perspective (in projective geometry)      343.B
Mapping piecewise affine      192.Q
Mapping piecewise linear (between polyhedra)      70.C
Mapping PL      65.A
Mapping Poincare      126.C G
Mapping product      425.K
Mapping projective (in projective geometry)      343.B
Mapping proper      425.W
Mapping purely inseparable rational      16.I
Mapping quasiconformal      352.B
Mapping quasiperfect      425.CC
Mapping quotient      425.G
Mapping rational      16.I
Mapping regular (between prealgebraic varieties)      16.C
Mapping regular, of class $C^1$      208.B
Mapping s.s.(semisimplicial) (between s.s.complexes)      70.E
Mapping s.s., realization of      70.E
Mapping semicontinuous (in a topological linear space)      153.D
Mapping semilinear      256.P 277.L
Mapping separable (rational)      16.I
Mapping simplicial      70.C
Mapping simplicial (between polyhedra)      70.C
Mapping simplicial (relative to triangulations)      70.C
Mapping skew-symmetric multilinear      256.H
Mapping space      202.C
Mapping space of continuous      435.D
Mapping spin      237.G
Mapping surjective      381.C
Mapping symmetric multilinear      256.H
Mapping Teichmuiler      352.C
Mapping theorem Brouwer      99.A
Mapping theorem open      37.I 424.X
Mapping theorem Riemann      77.B
Mapping theorem spectral      251.G
Mapping time-one      126.C
Mapping topological      425.G
Mapping topology induced by a      425.I
Mapping transposed (of a diffusion kernel)      338.N
Mapping transposed (of a linear mapping)      256.G
Mapping truck      202.G
Mapping uniformly continuous      273.I 436.E
Mapping unit      203.F
Maranda, Jean-Marie A.      362.K
Marchand, Jean-Paul      375.r
Marchenko equation, Gel’fand — Levitan- (for a nonlinear lattice)      287.C
Marchenko equation, Gel’fand — Levitan-(for KdVequations)      387.D
Marchenko, Vladimir Aleksandrovich      287.C 387.D
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте