Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Integral with respect to $\lambda$ (of a distribution)      125.H
Integral(s) (of differential forms)      105.T
Integrally closed (in a ring)      67.I
Integrally closed completely (ring)      67.I
Integrally closed ring      67.I
Integrally dependent element (of a ring)      67.I
integrand      216.A
Integrate      216.A
Integrate (an ordinary differential equation)      313.A
Integrating factor      App. A Table
Integration along a fiber (of a hyperfunction)      274.E
Integration automatic, scheme      299.C
Integration by parts      216.C
Integration by parts (in the Stieltjes integral)      94.C
Integration by parts (on D-integral)      100.G
Integration constant (in a general solution of a differential equation)      313.A
Integration contour of (of curvilinear integral)      94.D
Integration domain of      216.F
Integration formula based on variable transformation      299.B
Integration formula Gauss (in the narrow sense)      299.A
Integration formula Poisson      App. A Table
Integration formula Villat      App. A Table
Integration graphical      19.B
Integration Jacobi’s second method of      324.D
Integration numerical      299
Integration path of (of curvilinear integral)      94.D
Integration Romberg      299.C
Integrodifferential equation of Fredholm type      222.A
Integrodifferential equation of Volterra type      222.A
Integrodifferential equation Prandtl’s      222.C
Integrodifferential equation Wiener — Hopf      222.C
Integrodifferential equation(s)      163.A 222
Intensity, traffic      260.H
Intensive (thermodynamical quantity)      419.A
Interaction      102.H
Interest, assumed rate of      214.A
Interference (of waves)      446
Interior (of a manifold)      105.B
Interior (of a polygon)      155.F
Interior (of a segment)      155.B
Interior (of a set)      425.B
Interior (of a simplex)      70.C
Interior (of an angle)      139.D 155.B
Interior capacity, Newtonian      48.F
Interior cluster set      62.A
Interior field equation      359.D
Interior operator      425.B
Interior point      425.B
Interior problem (in Dirichlet problems)      120.A
Interior product (of a differential form with a vector field)      105.Q
Intermediate convergent (of an irrational number)      83.B
Intermediate field      149.D
Intermediate integrals      App. A Table
Intermediate integrals of Monge — Ampere equation      278.B
Intermediate-value theorem      84.C
Intermittent structure      433.C
Internal      338.L
Internal (in nonstandard analysis)      293.B
Internal energy      419.A
Internal irregular point      338.L
Internal law of composition (of a set)      409.A
Internal product      200.K
Internal space in catastrophe theory (in static model)      51.B
Internal state      31.B
Internal symmetry      150.B
Internally stable set      186.I
Internally thin set      338.G
International notation (for crystal classes)      92.B
International system of units      414.A
Interpolating (for a function algebra)      164.D
Interpolating sequence      43.F
Interpolation (of a function)      223 App. Table
Interpolation Chebyshev      223.A 336.J
Interpolation coefficient, Lagrange’s      223.A
Interpolation formula      223.A
Interpolation formula Bessel      App. A Table
Interpolation formula Everett      App. A Table
Interpolation formula Gauss      App. A Table
Interpolation formula Gauss’s backward      223.C
Interpolation formula Gauss’s forward      223.C
Interpolation formula Newton      App. A Table
Interpolation formula Newton’s backward      223.C
Interpolation formula Newton’s forward      223.C
Interpolation formula Stirling      App. A Table
Interpolation function      223.A
Interpolation Interpolation (of a stationary process)      176.K 395.E
Interpolation inverse      223.A
Interpolation Lagrange      223.A
Interpolation method      224.A
Interpolation of operators      224
Interpolation polynomial      223.A
Interpolation polynomial Hermite      223.E
Interpolation polynomial Lagrange      336.G App. Table
Interpolation polynomial Newton      336.G
Interpolation polynomial trigonometric      336.E
Interpolation problem      43.F
Interpolation scheme, Aitken      223.B
Interpolation space      224.A
Interpolation space complex      224.B
Interpolation space real      224.C
Interpolation spline      223.F
Interpolation theorem      224.B C
Interpolator formula      299.A
Interquartile range      397.C
intersect      155.B
Intersect properly (on a variety)      16.G
Intersect transversally      105.L
Intersection (of events)      342.B
Intersection (of projective subspaces)      343.B
Intersection (of sets)      381.B
Intersection (of subspaces of an affine space)      7.A
Intersection chart      19.D
Intersection complete      16.A
Intersection multiplicity (of two subvarieties)      16.Q
Intersection number (of divisors)      15.C
Intersection number (of homology classes)      65.B 201 O
Intersection number (of sheaves)      16.E
Intersection number self-      15.C
Intersection product (in algebraic varieties)      16.Q
Intersection product (in homology theory)      201.0
Intersection property, finite      425.S
Intersection theorem (of affine geometry)      7.A
Intersection theorem (of projective geometry)      343.B
Intersection theorem Cantor’s      273.F
Intersection theorem Krull      284.A
Interval (in a Boolean algebra)      42.B
Interval (in a lattice)      243.C
Interval (in a vector lattice)      310B
Interval (in an ordered set)      311.B
Interval (in real number space)      355.C
Interval basic      4.B
Interval closed      140 355.C
Interval confidence      399.Q
Interval estimation      399.Q 401.C
Interval fiducial      401.F
Interval finite      355.C
Interval function      380.A
Interval function additive      380.B
Interval function continuous additive      380.B
Interval infinite      355.C
Interval of absolute stability      303.G
Interval of continuity (for a probability distribution)      341.C
Interval of relative stability      303.G
Interval open      140355.C
Interval principle of nested      87.C
Interval supplementary      4.B
Interval tolerance      399.R
Intrablock analysis      102.D
Intransitive (permutation group)      151.H
Intrinsic angular momentum      415.G
Intrinsic homology      114.H
Intuitionism      156.A
Intuitionism semi-      156.C
Intuitionistic logic      411.L
Invariance homotopy      201.D
Invariance isospin      351.J
Invariance Lorentz      150.B
Invariance of a confidence region      399.Q
Invariance of dimension, theorem on (of Euclidean spaces)      117.D
Invariance of domain, Brouwer theorem on      117.D
Invariance of speed of light, principle of      359.B
Invariance principle (of hypothesis testing)      400.E
Invariance principle (of wave operators)      375.B
Invariance principle Donsker’s      250.E
Invariance principle Strassen’s      250.E
Invariance theorem of analytic relations      198.K
Invariance topological (homology groups)      201.A
Invariant (decision problem)      398.E
Invariant (element under a group action)      226.A
Invariant (function algebra)      164.H
Invariant (hypothesis)      400.E
Invariant (in the Erlangen program)      137
Invariant (measure)      136.B 225 270.L
Invariant (of a cohomology class of a Galois group)      59.H 257.E
Invariant (of a normal simple algebra)      257.G
Invariant (of an Abelian group)      2.B
Invariant (of an elliptic curve)      73.A
Invariant (S-matrices)      386.B
Invariant (subspace of a Banach space)      251.L
Invariant (underflow)      126.D
Invariant absolute      12.A 226.A
Invariant absolute integral      219.A
Invariant almost G-      396.I
Invariant Arf — Kervaire      114.J
Invariant basic      226.B
Invariant birational      12.A
Invariant Browder — Livesay      114.L
Invariant Cartan (of a finite group)      362.I
Invariant Cartan relative integral      219.B
Invariant conformal      77.E
Invariant covering linkage      235.E
Invariant decision function      398.E
Invariant derivation (on an Abelian variety)      3.F
Invariant differential (on an m-dimensional surface)      110.A
Invariant differential form (on an Abelian variety)      3.F
Invariant distribution (of second quantization)      377.C
Invariant distribution(s) (of a Markov chain)      260.A
Invariant Eilenberg — Postnikov (of a CW-complex)      70.G
Invariant estimator      399.I
Invariant estimator best      399.I
Invariant field      172.B
Invariant fundamental (of a space with a Lie transformation group)      110.A
Invariant fundamental differential (of a surface)      110.B
Invariant G- (element)      226.A
Invariant G- (measure)      225.A
Invariant G- (statistics)      396.I
Invariant generalized Hopf      202.Q
Invariant Hasse (of a central simple algebra)      29.G
Invariant homotopy      202.B
Invariant homotopy type      202.F
Invariant Hopf      202.S U
Invariant Hopf, modulo p      202.S
Invariant integral      219
Invariant integral, Hilbert’s      46.C
Invariant isomorphism (on a measure space)      136.E
Invariant Iwasawa      14.L
Invariant k- (of a CW-complex)      70.G
Invariant left (metric in a topological group)      423.I
Invariant left, Haar measure      225.C
Invariant left, tensor field      249.A
Invariant level a test, uniformly most powerful (UMP)      400.E
Invariant Markov process      5.H
Invariant measure (of a Markov chain)      260.A
Invariant measure (of a Markov process)      261.F
Invariant measure (under a transformation)      136.B
Invariant measure G-      225.B
Invariant measure problem      136.C
Invariant measure quasi-      225.J
Invariant measure relatively      225.H
Invariant measure smooth      126.J
Invariant measure sub-      261.F
Invariant measure transverse      154.H
Invariant measure(s)      225
Invariant metric (on a measure space)      136.E
Invariant Milnor      235.D
Invariant negatively      126.D
Invariant normal      114.J
Invariant of n-ary form of degree d      226.D
Invariant of order p      110.A
Invariant of weight w      226.D
Invariant p- (of a central simple algebra)      29.G
Invariant PCT      386.B
Invariant Poincare’s differential      74.G
Invariant positively      126.D
Invariant rearrangement      168.B
Invariant relative      12.A 226.A
Invariant relative integral      219.A
Invariant right, Haar measure      225.C
Invariant right, tensor field      249.A
Invariant sampling procedure      373.C
Invariant semi-      226.A
Invariant semi- (of a probability distribution)      341.C
Invariant shape      382.C
Invariant spectral      136.E
Invariant statistic      396.I
Invariant statistic maximal      396.I
Invariant subgroup (of a group)      190.C
Invariant subspace (of a linear operator)      164.H
Invariant subspace (of a linear operator) doubly      164.H
Invariant TCP-      386.B
Invariant tensor field left      249.A
Invariant tensor field right      249.A
Invariant test      400.E
Invariant test almost      400.E
Invariant topological      425.G
Invariant torus      126.L
Invariant U- (subspace of a representation space of a unitary representation)      437.C
Invariant uniformly most powerful      399.Q
Invariant vector      226.C
Invariant(s)      App. A Table
Invariants and covariants      226
Inventory control      227
Inventory model      307.C
Inverse (in a group)      190.A
Inverse (of a mapping)      381.C
Inverse analytic function      198.L
Inverse assumption      304.D
Inverse correspondence      358.B
Inverse domination principle      338.L
Inverse element (in a group)      190.A
Inverse element (in a ring)      368.B
Inverse element left (in a ring)      368.B
Inverse element quasi- (in a ring)      368.B
Inverse element right (in a ring)      368.B
Inverse Fourier transform (of a distribution)      125.O
Inverse function      198.L 381.C
Inverse function element      198.L
Inverse homotopy (for an H-space)      203.D
Inverse image (of a set)      381.C
Inverse image (of a sheaf)      383.G
Inverse image (of a uniformity)      436.E
Inverse image perfect      425.CC
Inverse interpolation      223.A
Inverse iteration      298.C
Inverse limit (of an inverse system of sets)      210.B
Inverse mapping      381.C
Inverse mapping theorem      208.B
Inverse matrix      269.B
Inverse morphism      52.D
Inverse operator      37.C 251.B
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте