Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Vector lattice complete      310.C
Vector lattice normed      310.F
Vector line (of a vector field)      442.D
Vector mean      341.B
Vector mean curvature      365.D
Vector measure      443.G
Vector measure absolutely continuous      443.G
Vector measure bounded      443.G
Vector measure completely additive      443.G
Vector measure finitely additive      443.G
Vector normal      105.L. 111.H 364.A
Vector normalized      409.G
Vector observation      102.A
Vector orthogonal      139.G
Vector p-      256.O
Vector p-, bundle of      147.F
Vector positive      7.A 442.A
Vector potential      130.A 442.D
Vector Poynting      130.A
Vector product      442.C App. Table
Vector proper (of a linear mapping)      269.L
Vector proper (of a linear operator)      390.A
Vector proper (of a matrix)      269.F
Vector representation (of a Clifford group)      61.D
Vector root      390.B
Vector row      269.A
Vector space      442.A
Vector space metric      256.H
Vector space over a field      256.H
Vector space prehomogeneous      450.V
Vector space standard (of an affine space)      7.A
Vector space tangent      105.H
Vector space topological      424.A
Vector tangent      105.H
Vector tangent, holomorphic      72.A
Vector tangent, of type (0, 1)      72.C
Vector tangent, of type (1, 0)      72.C
Vector triple product      442.C App. Table
Vector tube      442.D
Vector unit      442.B
Vector unit (of an affine frame)      7.C
Vector vacuum      377.A
Vector valuation      6.C
Vector valuation, ring of      6.C
Vector vertical      80.B
Vector wave number (of a sine wave)      446
Vector Witt      449
Vector Witt, of length n      449.B
Vector zero      442.A
Vector(s) (in a Euclidean space)      442
Vector-valued integral      443
Vectorial form, canonical      417.C
Vectorial p-form      417.C
Vedesinov, N.      425.Q
Veech, William Austin      136.H
Vekua, Il’ya Nestorovich      217.J 323.r
Veldkamp, Ferdinando D.      13.R
Velo, Giorgio      150.r
Velocity group      446
Velocity phase (of a sine wave)      446
Velocity phase space      126.L
Velocity potential      205.B
Veneziano model      132.C 386.C
Veneziano, Gabriele      132.C 386.C
Venkov, Boris Borisovich      200.M
Venttsel’, Aleksandr Dmitrievich      115.C 261.r 406.F
Ver Eecke, Paul      187.r
Verbeure inequality, Roepstorff — Fannes-      402.G
Verbeure, Andre      402.G
Verbiest, Ferdinand      57.C
Verdier, Jean-Louis      16.r 450.Q r
Vergne, Michele      384.r
Verhulst, Pierre Francois      263.A
Verner, James Hamilton      303.r
Veronese surface      275.F
Veronese, Giuseppe      275.F
Versal (unfolding)      51.D
Vershik, Anatolil Moiseevich      136.D r
Version (of a stochastic process)      407.A
Vertex (in a cell complex)      70.D
Vertex (in a Euclidean (simplicial) complex)      70.B
Vertex (in a simplicial complex)      70.C
Vertex (in the polyhedron of a simplicial complex)      70.C
Vertex (of a circular cone)      78.A
Vertex (of a complete quadrangle)      343.C
Vertex (of a convex cell in an affine space)      7.D
Vertex (of a convex polyhedron)      89.A
Vertex (of a geodesic triangle)      178.A
Vertex (of a graph)      186.B
Vertex (of a linear graph)      282.A
Vertex (of a parabola)      78.C
Vertex (of a polygon)      155.F
Vertex (of a simplex in an affine space)      7.D
Vertex (of a spherical triangle)      432.B
Vertex (of a star region)      339.D
Vertex (vertices) (of an angle)      139.D 155.B
Vertex adjacent      186.B
Vertex end      186.B
Vertex initial      186.B
Vertex isolated      186.B
Vertex terminal      186.B
Vertical angles      139.D
Vertical component (of a vector field)      80.C
Vertical slit mapping, extremal      367.G
Vertical vector      80.B
Very ample (divisor)      16.N
Very ample (linear system)      16.N
Very ample (sheaf)      16.E
Very weak Bernoulli process      136.E
Vesentini, Edoarc      122.F
Vessiot extension field, Picard-      113
Vessiot theory, Picard-      113
Vessiot, Ernest      107.A 113 249.V
Vey classes, Godbillon-      154.G
Vey, Jacques      151.G r
Vibrating membrane, equation of a      325.A
Vibrating string, equation of a      325.A
Vibration      318
Vibration normal      318.B
Vibration parametrically sustained      318.B
Vibration self-excited      318.B
Vick, James      201.r
Viehweg, Eckart      72.I r r
Viete, F.      444
Viete, Francois      8 20 332 360 444
Vietoris axiom      425.Q
Vietoris exact sequence, Mayer- (for a proper triple)      201.C
Vietoris, Leopold      201.A C E L
Vigneras, Marie-France      391.C
Vigue, Jean-Pierre      384.r
Vilenkin, Naum Yakovlevich      112.r 125.r 162.r 218.r 341.r 389.r 395.r 407.C 437.AA
Villat integration formula      App. A Table
Villat, Henri Rene Pierre      App. A Table
Ville, Jean A.      262.A
Vinberg, Ernest Borisovich      122.G 351.I 384.C r
Vinogr Mov, Ivan M.      4.C E E
Vinogradov mean value theorem      4.E
Vinter, Richard B.      127.G
Virtanen, Kaarlo T.      62.C 352.A C I
Virtual arithmetic genus (of a divisor)      16.E
viscosity      205.B
Viscosity coefficient of      205.C
Viscosity coefficient of bulk      205.C
Viscosity coefficient of shear      205.C
Viscosity magnetic      259
Vishik, Mark Iosifovich      112.E 323.N
Visibility manifold      178.F
Vitali covering theorem      380.D
Vitali, Giuseppe      270.G 380.D
Viterbi, Andrew J.      213.E
Vitt, Aleksandr Adol’fovich      290.r
Vitushkin, Anatolil Georgievich      164.J 169.E
Vivanti theorem      339.A
Vivanti, Giulio      217.r 339.A
Vladimirova, S.M.      365.J
Vogan, David Alexander, Jr.      437.r
Vogel, Kurt      24.r
Vogel, William R.      200.r
Vogt, Dietmar      168.B
Voichick, Michael      164.K
Voiculescu, Dan Virgil      36.J 331.E
Voider, J.E.      142.C
Voigt, Jurgen      331.E
Volk, Isai Mikhallovich      289.E
Volkov, Yurii Aleksandrovich      365.J
Volkovyskil, L.      198.r
Volterra integral equation      217.A
Volterra operator      68.J
Volterra theorem, Poincare-      198.J
Volterra type integral equation of      217.A
Volterra type integrodifferential equation of      222.A
Volterra, Vito      20 68.J 162 163.B 198.J 217.A 222.A 263.B
Voltyanskii, V.G.      155.r
Volume (of a lattice in a Euclidean space)      92.D
Volume (of a polyhedron)      139.F
Volume (of a simplex in an affine space)      7.E
Volume (ofanidele)      6.D
Volume element (of an oriented $C^{\infty}$-manifold)      105.W
Volume element associated with a Riemannian metric      105.W
Volume element integral of a function with respect to a (on a $C^{\infty}$-manifold)      105.W
Volume inner      270.G
Volume outer      270.G
von Eotvos, Roland      359.D
von Helmholtz, Hermann      139.A 188.D 205.B 419.C 442.D App. A Tables 15.VI
von Karman transonic similarity      205.D
von Karman, Theodore      205.E 433.C
von Koch, Helge      246.K 450.I
von Mises theorem      399.K
von Mises, Richard      298.r 342.A 354.E 399.K r
von Neumann algebra      308.C
von Neumann algebra discrete      308.E
von Neumann algebra finite      308.E
von Neumann algebra induced      308.C
von Neumann algebra of type I      308.E
von Neumann algebra of type II      308.E
von Neumann algebra of type III      308.E
von Neumann algebra oftype $II_{\infty}$      308.E
von Neumann algebra purely infinite      308.E
von Neumann algebra reduced      308.C
von Neumann algebra semifmite      308.E
von Neumann algebra structure theorem for, of type III      308.I
von Neumann condition      304.F
von Neumann density theorem      308.C
von Neumann inequality      251.M
von Neumann reduction theory      308.G
von Neumann selection theorem      22.F
von Neumann theorem, Weyl-      390.I
von Neumann uniqueness theorem      351.C
von Neumann — Halmos theorem      136.E
von Neumann — Morgenstern solution      173.D
von Neumann, J.      445
von Neumann, John      18.A E r r C B E F r C D r r F G I r L r
von Seidel, Philipp Ludwig      302.C
von Struve, Friedrich George Wilhelm      39.G App. A Table
Vopenka, Petr      33.r
Voronoi, Georgil Fedoseevich      242.A
Vortex line      205.B
Vortex, vector field without      442.D
Vorticity      205.B
Vorticity theorem, Helmholtz      205.B
Voss, Heinz-Jiirgen      186.r
Vossen theorem, Cohn-      111.I
Vranceanu, Gheorghe      434.C
VSVO algorithm      303.E
Vulikh, Boris Zakharovich      310.A
W*-algebra      308.C
W-construction (of an Eilenberg — MacLane complex)      70.F
w-plane      74.D
w-point (of an entire function)      429.B
w-sphere      74.D
W-surface      111.I
W.B.process      136.E
Wada, Junzo      164.C
Wada, Yasusi      230
Waelbroeck, Lucien      36.M
Wage, M.L.      117.E
Wagner function      39.F
Wagner, Harvey Maurice      307.r 408.r
Wagner, Herbert      39.F
Wagner, S.W.      95.r
Wagschal, Claude      321.G
Wagstaff, Samuel S.      14.L 145
Wahl, Jonathan Michael      9.r
Wahlin, G.E.      145.r *
Wait, R.      223.r 301.r 304.r
Waiting time      260.H
Waiting time distribution      307.C
Wakakuwa, Hidekiyo      13.F
Wald theorem      399.H M
Wald, Abraham      399.H M r r
Waldhausen, Friedhelm      65.E 235.B
Waldschmidt, Michel      430.D r
Wales, David B.      151.I App. B Table
Walfisz, Arnold Z.      4.D 123.D 220.B 242.r 295.D
Walker equation, Yule-      421.D
Walker metrics, Robertson-      359.E
Walker, Arthur G.      359.E
Walker, G.      421.D*
Walker, M.R.      376.r
Walker, R.C.      425.r
Walker, Robert John      9.r 15.B
Wall adiabatic      419.A
Wall diathermal      419.A
Wall group      114.J
Wall, Charles Terens Clegg      114.H J K r
Wallace, Andrew Hugh      114.F L
Wallach, Nolan R.      178.r 199.r 249.r 275.A F
Wallis formula      App. A Table
Wallis test, Kruskal-      371.D
Wallis, Jennifer Seberry      241.r
Wallis, John      20 265 332 App. A Table
Wallis, Walter Denis      241.r
Wallis, Wilson Allen      371.D
Wallman, Henry      117.r
Walsh system of orthogonal functions      317.C
Walsh, John Joseph      117.I
Walsh, Joseph Leonard      223.r 317.C 336.F I
Walter, J.S.      142.C
Walter, John H.      151.J
Walter, Wolfgang      211.r
Walters, Peter      136.H
Walther, Hansjoachim      186.r
Wandering      126.E
Wandering point      126.E
Wandering set      136.C
Wang exact sequence (of a fiber space)      148.E
Wang Hsien-Chung      81 110.E 148.E 152.r 199.r 413.r
Wang Xiaotong      57.A
Wang, Ju-Kwei      164.G
Wantzel, Pierre-Laurent      179.A
Ward, Harold Nathaniel      App. B Table R.I6.r
Waring problem      4.E
Waring, Edward      4.E
Warner, Frank Wilson      364.H
Warner, Garth William, Jr.      249.r 437.r
Warning second theorem      118.B
Warning theorem      118.B
Warning, E.      118.B
Warschawski, Stefan Emanuel      77.C
Wasan      230
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте