Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics. Vol. 2

Автор: Ito K.

Аннотация:

This second edition of the widely acclaimed Encyclopedic Dictionary of Mathematice includes 70 new articles, with an increased emphasis on applied mathematics, expanded explanations and appendices, and a reorganization of topics.


Язык: en

Рубрика: Математика/Энциклопедии/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: Second Edition

Год издания: 1993

Количество страниц: 999

Добавлена в каталог: 23.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Fixed-effect model      102.A
Fixed-point index (of a continuous mapping)      153.B
Fixed-point theorem Atiyah — Bott      153.C
Fixed-point theorem Atiyah — Singer      153.C
Fixed-point theorem Brouwer      153.B
Fixed-point theorem Kakutani      153.D
Fixed-point theorem Lefschetz      153.B
Fixed-point theorem Leray — Schauder      286.D
Fixed-point theorem Poincare — Birkoff      153.B
Fixed-point theorem Schauder      153.D 286.D
Fixed-point theorem Tikhonov      153.D
Fixed-point theorem(s)      153
FKG      212.A
Flabby resolution      125.W
Flabby sheaf      383.E
Flag (in an affine space)      139.B
Flag manifold      199.B
Flag manifold proper      199.B
Flammer, Carson      133.r
Flanders, Harley      94.r 432.r 442.r
Flaschka, Hermann      287.B r
Flat $\varepsilon$-      178.D
Flat (connection)      80.E
Flat (morphism of schemes)      16.D
Flat (Riemannian manifold)      364.E
Flat (sphere pair)      235.G
Flat conformally      191.B
Flat deformation      16.W
Flat F-bundle      154.B
Flat faithfully (A-module)      277.K
Flat faithfully (morphism of schemes)      16.D
Flat function      58.C
Flat locally (connection)      80.E
Flat locally (PL embedding)      65.D
Flat locally (Riemannian manifold)      364.E
Flat normally (along a subscheme)      16.L
Flat point (of a surface)      111.H
Flat site      16.AA
Flat space concircularly      App. A Table
Flat space conformally      App. A Table
Flat space projectively      App. A Table
Flat ^-module      277.K
Flavor dynamics, quantum      132.D
Fleissner, William G.      273.K
Fleming, Wendell Helms      108.A 275.A G
Flex      9.B
Flip model, spin      340.C
Floating point method      138.B
Flon, L.      75.r
Floquet theorem      252.J 268.B
Floquet, G.      107.A 252.J 268.B
Flow $C^r$-      126.B
Flow (in ergodic theory)      136.D
Flow (on a network)      281.B
Flow (on a topological space)      126.B
Flow Anosov      126.B 136.G
Flow associated      136.F
Flow Axiom A      126.J
Flow built under a function      136.D
Flow continuous      126.B
Flow discrete      126.B
Flow equivalent      126.B
Flow geodesic      126.L 136.G
Flow harmonic      193.K
Flow homentropic      205.B
Flow horocycle      136.G
Flow hypersonic      205.C
Flow K-      136.E
Flow Kolmogorov      136.E
Flow Kronecker      136.G
Flow laminar      205.E 433.A
Flow maximum, minimum cut theorem      281
Flow maximum, problem      281
Flow measurable      136.D
Flow minimal      126.N
Flow minimum-cost, problem      281.C
Flow Morse — Smale      126.J
Flow multicommodity, problem      281.F
Flow network, model      307.C
Flow network, problem      281282.B
Flow of class $C^r$-      126.B
Flow S-      136.D
Flow single-commodity, problem      281.F
Flow special      136.D
Flow translational      126.L 136.G
Flow transonic      205.B
Flow transversal      136.G
Flow turbulent      205.E 433.A
Flow Y-      136.G
Flow-shop scheduling problem      376
Floyd, Edwin E.      237.r 431.E r
Fluctuation-dissipation theorem      402.K
Fluid      205.A
Fluid compressible      205.B
Fluid dynamics      205.A
Fluid incompressible      205.B
Fluid Newtonian      205.C
Fluid non-Newtonian      205.C
Fluid perfect      205.B
Flux (of a regular tube)      193.K
Flux density electric      130.A
Flux density magnetic      130.A
Flux vector (through a surface)      442.D
Focal conic (of a quadric)      350.E
Focal length      180.B
Focal point (of a submanifold of a Riemannian manifold)      364.C
Fock representation      150.C
Fock space      377.A
Fock space antisymmetric      377.A
Fock space symmetric      377.A
Focken, C.M.      116.r
Focus (of a conic section ellipse)      78.B
Focus (of a quadric)      350.E
Focus (of an optimal system)      180.B
Foder, Geza      33.r
Fodor, Jerry A.      96.r
Fogarty, John      226.r
Fogels, E.      123.D F
Foguel, Shaul R.      136.C
Foias model, Sz.Nagy-      251.N
Foias, Ciprian      251.N
Fok (Fock), Vladimir Aleksandrovich      105.C 377.A r
Fokker — Planck partial differential equation      115.A 402.I
Fokker, Adriaan Daniel      115.A 402.I
Folding (of a chamber complex)      13.R
Foliated bundle      154.B H
Foliated cobordant ($C^n$-foliations)      154.H
Foliated cobordism      154.H
Foliated structure      105.Y
Foliation      154
Foliation $C^r$-      154.B G
Foliation $\Gamma_{\varphi}$      154.H
Foliation Anosov      126.J
Foliation compact      154.H
Foliation cycles      154.H
Foliation holomorphic      154.H
Foliation real analytic      154.H
Foliation Reeb      154.B
Foliation Riemannian      154.H
Foliation transverse to      154.H
Folium cartesii      93.H
Folium of Descartes      93.H
Fomin, Sergei Vasil’evich      2.F 46.r 136.G
Fong, Paul      151.J App. B Table
Foot of the perpendicular      139.E
Force apparent      271.D
Force body      271.G
Force centrifugal      271.D
Force Corioli      271.D
Force line of      193J
Force Lorentz      130.A
Force polygon      19.C
Force restitutive      318.B
Forced oscillation      318.B
Ford fundamental region      234.C
Ford, Lester R.      234.C r
Ford, Walter Burton      30.r
Forelli, Frank      164.G H K
Forgetful functor      52.I
Form $\varepsilon$-Hermitian      60.O
Form $\varepsilon$-trace      60.O
Form anti-Hermitian      256.Q
Form associated (of a projective variety)      16.S
Form automorphic      437.DD 450.O
Form automorphic, of weight k (or of dimension — k)      32.B
Form automorphic, of weight m      32.A
Form basic (in linear programming)      255.A
Form bilinear      256.H 277.J 424.G
Form bilinear, associated with a quadratic form      256.H
Form canonical (of a linear hypothesis)      400.H
Form canonical (of F(M))      191.A
Form canonical 1- (of the bundle of tangent n-frames)      80.H
Form canonical, of the equation (of a quadric)      350.B
Form Cantor normal      312.C
Form compact (of a complex semisimple Lie algebra)      248.P
Form complex (of a Fourier series)      159.A
Form complex (of a real Lie algebra)      248.P
Form complex space      365.L
Form connection      80.E 417.B
Form contact      110.E
Form covariant of n-ary, of degree d      226.D
Form covariant with ground      226.D
Form curvature      80.G 364.D
Form cusp (in Siegel upper half-space)      32.F
Form cusp (in the case of one variable)      32.B
Form Dirichlet      261.C
Form divergence      323.D
Form dominant integral (on a Cartan subalgebra)      248.W
Form Euclidean space      412.H
Form first fundamental      111.G App. Table
Form Form kernel      348.F
Form formula of embedding      303.D
Form Fuchsian, of weight k (or of dimension —k)      32.B
Form fundamental (associated with a Hermitian metric)      232.A
Form fundamental (of a Finsler space)      152.A
Form games in partition-function      173.D
Form generalized Levi      274.G
Form ground      226.D
Form Hermitian      256.Q
Form Hesse normal (of a hyperplane)      139.H
Form Hilbert modular, of dimension — k      32.G
Form Hilbert modular, of weight k      32.G
Form holomorphic k-      72.A
Form hyperbolic space      412.H
Form integral (on a Cartan subalgebra)      248.W
Form invariants of n-ary, of degree d      226.D
Form Jordan normal      269.G
Form k- (of an algebraic group)      13.M
Form Khinchin canonical      34l.G
Form Killing      248.B
Form Kolmogorov canonical      34l.G
Form Legendre — Jacobi standard      134.A App. Table
Form Levi      344.A
Form Levy canonical      341.G
Form limit of an indeterminate      106.E
Form linear (on a linear space)      256.B
Form linear (on an A-module)      277.E
Form modular, of level N      32.C
Form multilinear      256.H
Form n-person      173.B-D
Form norm      118.D
Form normal (of a partial differential equation of the first order)      324.E
Form normal (of a surface)      410.B
Form normal (of an ordinal number)      312.C
Form normal (of an ordinary differential equation)      313.B
Form normal (of partial differential equations)      321.B
Form normal real (of a complex semisimple Lie algebra)      248.Q
Form normic (in a field)      118.F
Form Pfaffian      105.Q 428.A
Form polar (of a complex number)      74.C
Form primitive      232.C
Form pseudotensorial      80.G
Form real (of a complex algebraic group)      60.O
Form real (of a complex Lie algebra)      248.P
Form reduced (of a linear structural equation system)      128.C
Form regular Dirichlet      261.C
Form ring      284.D
Form second fundamental      111.G 365.C App. Table
Form Siegel modular, of dimension — k      32.F
Form Siegel modular, of weight k      32.F
Form skew-Hermitian      256.Q
Form skew-symmetric multilinear      256.H
Form space      285.E 412.H
Form spherical space      412.H
Form standard (of a difference equation)      104.C
Form standard (of a latin square)      241.A
Form symmetric multilinear      256.H
Form symplectic      126.L
Form tensorial      80.G
Form third fundamental      App. A Table
Form torsion      80.H
Form Weierstrass canonical (for an elliptic curve)      9.D
Form Weierstrass canonical (of the gamma function)      174.A
Form Weyl      351.C
Form(s)      337.B
Formal adjoint operator      322.E
Formal degree (of a unitary representation)      437.M
Formal dimension n, Poincare pair of      114.J
Formal geometry      16.X
Formal group      13.C
Formal power series      370.A
Formal power series field in one variable      370.A
Formal power series field of, in one variable      370.A
Formal power series ring      370.A
Formal power series rings of      370.A
Formal scheme      16.X
Formal scheme separated      16.X
Formal solution (for a system of ordinary differential equations)      289.C
Formal spectrum (of a Noetherian ring)      16.X
Formal system      156.D 411.I
Formal Taylor expansion      58.C
Formal vector fields      105.AA
Formalism      156.A D
Formalism Gupta — Bleuler      150.G
Formally real field      149.N
Formally self-adjoint (differential operator)      112.I
Formally undecidable proposition      185.C
Formation class      59.H
Formation pattern      263.D
Formation rule      411.D
Formation, class      59.H
Formula $\Theta$- (on ideles)      6.F
Formula Abramov      136.E
Formula addition (for ez)      131.G
Formula addition (for sine and cosine)      432.A
Formula Adem      App. A Table
Formula algebraic addition      3.M
Formula atomic      411.D
Formula atomic (of a language)      276.A
Formula Bayes      342.F 405.I
Formula Bessel interpolation      App. A Table
Formula Binet      174.A 295.A
Formula Bouquet (on space curves)      111.F
Formula Campbell — Hausdorff      249.R
Formula Cardano      App. A Table
Formula Cartan (for Steenrod pth power operations)      64.B
Formula Cartan (for Steenrod square operations)      64.B
Formula Cauchy integral      198.B
Formula Cauchy — Hadamard (on the radius of convergence)      339.A
Formula Chebyshev (in numerical integration)      299.A
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте