|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Oden J.T. — Finite Elements: An Introduction (Vol. 1) |
|
|
Ïðåäìåòíûé óêàçàòåëü |
11 16
basis functions 233—237
55—56 43 147 223—224 244
norm 57
7—11 16 20 23 56—58 60 241
231
235—236
58 224 232 235
16 23 39
A-posteriori estimates 36
A-priori estimates 36
Accuracy, of finite element approximation 36—39 189 197 see “Errors”
Admissible functions see “Test function”
Admissible functions, for one-dimensional problems 7
Admissible functions, for three-dimensional problems 223
Admissible functions, for two-dimensional problems 57 147
Admissible functions, fourth-order problRems 231—232
Approximation, best Galerkin 14—15
Approximation, interpretation of 31—36
Approximation, of systems 241
Approximation, of three-dimensional problems 224
Approximation, of time-dependent problems 249
Approximation, of two-dimensional problems 162 165
Approximation, of two-point problems by finite elements 73—76
Area coordinates 201—205
Area coordinates, and nonlinear maps 202
Area coordinates, definition 201
Backward difference scheme 251
Banded matrix 26
Banded matrix, elimination of 118—121
Banded matrix, storage of 118—121 209
Bandwidth, definition of 119
Basis functions, -type 232 234 236—237
Basis functions, for Galerkin's method 11—15 59
Basis functions, for model two-point problem 15—23
Basis functions, global 33 67 69 157 234
Basis functions, Hermite 233—237
Basis functions, Lagrange polynomial 67 195 204
Basis functions, on rectangles 159 236—237
Basis functions, on triangles 154 157 237
Basis functions, piecewise-constant 22
Basis functions, piecewise-linear 17 20 25 30 38 67—68 85 154 157
Basis functions, piecewise-polynomial 16
Basis functions, piecewise-quadratic 23
Beam bending 238—239
Bicubic rectangle 237
Biharmonic equation 235—236 239
Body forces 44
Boundaries, parametric definition of 141—142 193
Boundaries, smoothness of 132
Boundary condition data, input of 104 212—223
Boundary conditions, calculation and flowchart of 216
Boundary conditions, clamped plate 235
Boundary conditions, compatability of 229—230
Boundary conditions, convective 216
Boundary conditions, essential 43 49 55—56 60 81 138 140 223 231—232
Boundary conditions, for biharmonic equation 235
Boundary conditions, for fourth-order problems 229—230
Boundary conditions, for general two-point problems 42 79—84
Boundary conditions, in CODE2 218—229
Boundary conditions, inCODEl 107—109
Boundary conditions, natural (definition) 49 138 146 231—232
Boundary integrals, computation of 191—192
Boundary, restriction of shape functions 191
Brick element 226
Capacitance matrix see “Mass matrix”
Chain rule, in area coordinates 205
Chain rule, in shape function transformation 189
Charge 4
Classical boundary-value problem 3 8 40—52 62 224 228—229 235 240
Compatability condition for, data in two-point problems 83 141 228—230
Complete polynomials, integration error for 160—161 205—208
Completeness, and rate of convergence 197—198
Conservation principle 43 47 49—51 83 136 138 141 246—247
Conservation principle, of electric flux 44
Conservation principle, of energy 44
Conservation principle, of linear momentum 44 242—243 247
Conservation principle, of mass 44
Constitutive equation 43 44 46 49 136 140 243 247
Constitutive equation, Stokes' law 44
Convergence in an sense 11
Convergence rates 36—37 189 197 see “Errors”
Coordinate function, derivatives 189 201
Coulomb's law 44
Cube element 225—227
Cubic triangle 240
Curvilinear coordinates, from master element map 176—177
Darcy's law 44
Data, management of 90
Data, of a boundary-value problem 1 140 229—230
Deformations, calculation of 127—130
Deformations, of an elastic bar 44
Degrees-of-freedom 12 15 59 235—237
Degrees-of-freedom, definition of 12
Degrees-of-freedom, for beam element 238
Degrees-of-freedom, for fourth-order problems 235—237
Degrees-of-freedom, symbolism 236—237
Derivatives, directional 133
Derivatives, of element transformation 183
Diffusion 247
Dirac delta 2 4 46 48 84 144 167 232
Divergence theorem 136 137 143 145
Divergence, definition of 134
Elastic modulus 246
Elasticity 242 244 246—247
Electrostatics 44
Element calculations, flow chart of 30
Element calculations, for ODE system 242
Element calculations, general 187—194
Element calculations, transformation to master element 177
Element calculations, two-dimensional 175—121
Element flux vector 166
Element matrices, assembly of 91
Element matrices, calculation of 26 74—76 91 187 190
Element matrices, for time dependent problems 251
Element transformations, in three dimensions 225—226
Element transformations, in two dimensions 175—187
Energy, conservation of 247
Energy, first variation of 61—64
Energy, functional 60—64
Energy, norm 36 38 57 114
Energy, second variation of 61—64
Energy, strain 32—33 36
entropy 247
Equilibrium equations 243
Errors, analysis of 37—38 57
Errors, asymptotic estimates of 35
Errors, estimates 35—38 70
Errors, estimates for two-point problems 84—85
Errors, estimates, a-posteriori 36
Errors, estimates, a-priori 36
Errors, in Galerkin approximation 14
Errors, interpolation 67
Errors, log-log-plots of 37
Errors, measures 38
Errors, pointwise 38 124
Errors, quadrature 190
Errors, residual 53
Essential boundary condition see “Boundary conditions”
Evolution problems see “Time dependent problems”
Extrapolation 33—34
Finite element mesh, definition 16
Finite element method, definition 1
Finite element, definition 1 16
Flow through pourous media 44 247
Fluid flow 44 242
Flux 43 45—46 48—49 73 74 76—77 80 247
Flux, electric 44
Flux, flow rate 44
Flux, heat flux 44
| Flux, jump in 46
Flux, shear stress 44
Forward difference scheme 250
Fourier series 10
Fourier's law 44 247
Fourth-order problems 222 228—240
Fourth-order problems, essential boundary conditions 231—232
Fourth-order problems, natural boundary conditions 231—232
Fourth-order problems, two-dimensional 235—239
Fourth-order problems, two-point problem 228—235
Fully discrete method 250
Functional, definition 60
Galerkin approximation, finite element subspace for 23 58
Galerkin approximation, for the general one-dimensional boundary value problem 58—60 73
Galerkin approximation, for the model problem 10—15
Galerkin's method, definition 12
Gauss' theorem see “Divergence theorem”
Gaussian elimination 109—111
Gaussian quadrature 23 95 190 206
Global matrices 105—107 228
Gradient, definition of 133
Green — Gauss Theorem 148
Green's formula 143 148
Heat conduction 44 247
Heat sources 44
Hermite interpolation 233—237
Hooke's law see “Constitutive equation”
Hyperbolic equation 248
Ill-posed problem 48 55 230—238
Implicit time integration 251—252
Initial-value problems 41 248—252
Integrals, coordinate transformation of 190
Integrals, on boundaries 191—192
Integration, exact for tetrahedra 228
Integration, exact for triangles 207—208
Integration, points, definition of 93
Integration, rules for one dimension 75 91—95
Integration, rules for quadrilaterals 199
Integration, rules for triangles 205
Interpolant, finite element 22 72
Interpolant, of data 75
Interpolation, error 67
Interpolation, error, rate of convergence 161
Interpolation, Hermite 233—235
Interpolation, higher-order 64
Interpolation, Lagrange 65 67
Interpolation, of one-dimensional problems 64—73
Interpolation, of problem data 191
Interpolation, piecewise-linear 21
Inverse map 179
Invertibility of map 179 182
Isoparametric elements 193
Isotropic 136
Jacobian, for boundary integrals 191—192
Jacobian, geometric interpretation of 181—182 201—202
Jacobian, invertibility condition on 179 182—186 194
Jump conditions 46 48 62 73 78 139—140 148—149
Lagrange, basis functions 67
Lagrange, families 65 67 72—73 157 159
Lagrange, interpolation 65 67 72
Lagrange, triangles 203—204
Laplaces equation 142
Laplacian operator 143 236
Line source 149 167
Linear momentum, conservation of 242—243 2
Linear space 10
Load, vector 23 26 28 62 76 85 164 225
Load, vector for Galerkin's method 12 59
Map , construction of 179—187
Map , criteria for 179—181
Map , curved elements 207
Map , invertibility conditions 185
Map , using finite element shape functions 180
Mass matrix 250
Master element, calculations on 188—193
Master element, in one dimension 65
Master element, in three dimensions 225—226
Master element, in two dimensions 175—179
Master element, integration 190
Master element, map 176—177 235
Master element, shape functions 188
Master element, square 181
Master element, triangle 181 200
Material, modulus 43 45 47 136
Material, modulus-dielectric permittivity, permeability, thermal conductivity, viscosity, Young's modulus of elasticity 44
Material, properties 89—99 104
Mesh, construction by master elements 175—178
Mesh, finite element 16 23 72—73 77 150 223
Mesh, parameter h 36
Mesh, refinement 21 36 125
Midstep time integration 252
Mixed boundary conditions 83
Modulus of elasticity 44 127 242
Natural boundary conditions, definition of 49 138 146 231—232
Natural boundary conditions, for beam bending 239
Natural boundary conditions, for fourth order problems 231—232
Natural boundary conditions, in one dimension 80
Natural boundary conditions, in three dimensions 223
Natural boundary conditions, in two dimensions 141
Natural boundary conditions, relation to conservation principle 139—140
Neumann, boundary conditions 82
Neumann, problem 82 85
Nodal, displacements 168
Nodal, points 16 23 72
Nodal, values 33
Norm, 57
Norm, definitions of 35
Norm, energy 35 38 57
Norm, maximum 35—36
Norm, mean-square 35—36 38
Numerical integration see “Integration”
Orthogonality 14 38
Parabolic equations 247
Parametric map 193
Pascal's triangle 157 204
Penalty method 121—123
Plane, strain 127
Plane, stress 127 242—246
Plate bending 235
Point loads see “Dirac delta”
Point source see “Dirac delta”
Poisson's ratio 242 246
Post processing 88 100-11 210—225
Principle, conservation see “Conservation principle”
Principle, of superposition 41
Principle, of virtual work 244 246
Quadratic element 196—197
Quadrature see “Integration”
Quadrature, error 190
Quadrature, Gauss see “Gaussian quadrature”
Quadrature, points 198—199 205—206
Quadrature, rules for quadrilaterals 198—199
Quadrature, rules for triangles 205—206
Quadrature, weights 190 192
Quadrilateral elements 195—199 207
Quintic triangle 237
Rate of convergence 36—37 84—85
Rate of convergence, of interpolation error 161
Refinement of mesh 21 36 125
Residual, for fourth order problems 229
Residual, for the model problem 5
Residual, for time dependent problems 248
Residual, of the differential equation 6 53 144
Self-adjoint, boundary-value problem 26
Self-adjoint, operator 63—64
Semi-discrete method 249—250
Shape functions, calculation 95—96 217 219
Shape functions, definition 26
Shape functions, derivative calculation 95—96 189 216—227
Shape functions, for one dimension 26—27 65—68 72—74
|
|
|
Ðåêëàìà |
|
|
|