Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Dennery P., Krzywicki A. — Mathematics for Physicists
Dennery P., Krzywicki A. — Mathematics for Physicists



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Mathematics for Physicists

Àâòîðû: Dennery P., Krzywicki A.

Àííîòàöèÿ:

Excellent text provides thorough background in mathematics needed to understand today’s more advanced topics in physics and engineering. Topics include theory of functions of a complex variable, linear vector spaces, tensor calculus, Fourier series and transforms, special functions, more. Rigorous theoretical development; problems solved in great detail. Bibliography. 1967 edition.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1996

Êîëè÷åñòâî ñòðàíèö: 398

Äîáàâëåíà â êàòàëîã: 17.04.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$L^{2}_{w}(a,\ b)$ space and Hilbert space      197
$L^{2}_{w}(a,\ b)$ space, definition      190
Accumulation point      4
Algebra of linear operators      113—114
Algebra of matrices      129—132
Algebra of vectors      104
Algebra, fundamental theorem of      86
Analytic completion      101
Analytic continuation      76—82
Analytic continuation, along a curve      76—78
Analytic continuation, basic theorem on      76
Analytic continuation, Schwarz reflection principle      81
Analytic functions      1—101
Analytic functions and power series      23 45
Analytic functions at a point      22
Analytic functions in a region      22
Analytic functions of several complex variables      98 334
Analytic functions, derivatives of      40
Analytic functions, local behavior of      41
Analytic functions, zeros of      50
and classification of isolated singular points      51
Associated Legendre functions      see "Legendre functions"
Asymptotic expansion      92—93
Asymptotic expansion for Bessel functions of large argument      330
Asymptotic expansion for Bessel functions of large order      328 see method" "Stokes
Asymptotic expansion for confluent hypergeometric function      319—320
Asymptotic expansion for gamma function      98
Basis of a space      119 193 197
Basis of a space and set of eigenvectors of an operator      162 244 254 288
Basis of a space, change of      134
Bessel functions      322—332
Bessel functions and confluent hypergeometric function      322
Bessel functions of first kind      322
Bessel functions, asymptotic behavior      328
Bessel inequality      192
Bessel's equation      322
beta function      96
Bolzano — Weierstrass theorem      238
boundary conditions      258 334 341—346
Boundary conditions and types of partial differential equations      341—346 see "Uniqueness
Boundary conditions, adjoint      268
Boundary conditions, Cauchy's      334 346
Boundary conditions, Dirichlefs      272 341 346
Boundary conditions, homogeneous      259
Boundary conditions, inhomogeneous      260
Boundary conditions, Neumann's      272 341 346
Boundary conditions, periodic      272
Branch cut      67
Branch point      67 69—70
Cauchy criterion for uniform convergence      10
Cauchy theorem      34
Cauchy — Kovalevska theorem      334
Cauchy — Liouville theorem      42
Cauchy — Lipschitz theorem      259
Cauchy — Riemann conditions      15
Cauchy — Schwarz inequality      108 182
Cauchy's boundary conditions      334 346 see "Uniqueness
Cauchy's integral formula      37
Cayley — Hamilton theorem      158
Characteristic equation      158
Characteristics      336
Compact operators      see "Completely continuous operators"
Compact set of vectors      239
Completely continuous operators      243 244 252—254 287
Completeness of a set of functions      199
complex numbers      5—7
Complex plane      6
Components of a vector      119 138
Components of a vector, transformation of      135 137 see
Confluent hypergeometric equation      316
Confluent hypergeometric function      317
Confluent hypergeometric function, asymptotic behavior      319—320
Confluent hypergeometric function, functions related to      321
Confluent hypergeometric function, integral representations      317—318
Confluent hypergeometric function, series representations      318
Conformal transformations      25—33
Conformal transformations and change of integration variable      29
Conformal transformations and point at infinity      28
Conformal transformations, conformal mapping      27
Conformal transformations, homographic transformations      27—29
Continuity of a function      9
Contour integrals      18—21
Contour integrals and calculus of residues      53—60
Contour integrals and Riemann integrals      20 see "Cauchy "Darboux
Contour integrals of multivalued functions      74—75
Contour integrals, change of integration variable      29
Contraction of tensors      145
Convergence of sequence of functions      9
Convergence of sequence of functions, uniform      9
Convergence of sequence of functionsin the mean      191
Darboux inequality      21
Delta function      235—237
Delta function in N—dimensions      346—347 see
Delta, Kronecker's      124
Difference equations      254
Differentiability of functions of a complex variable      12—16
Differentiability of functions of a complex variable, Cauchy — Riemann conditions      15
Differentiability of functions of a complex variable, sufficiency conditions for      15
Differential equations, for Laplace equation      345—346 355
Differential equations, for wave equation      360 see
Differential equations, ordinary      257—332
Differential equations, ordinary, boundary conditions      see "Boundary conditions"
Differential equations, ordinary, Cauchy — Lipschitz theorem      259
Differential equations, ordinary, homogeneous      257
Differential equations, ordinary, inhomogeneous      257
Differential equations, ordinary, linear      257
Differential equations, ordinary, second order of Fuchs type      303
Differential equations, ordinary, second order, Bessel      322
Differential equations, ordinary, second order, confluent hypergeometric      316
Differential equations, ordinary, second order, fundamental set of solutions      262
Differential equations, ordinary, second order, Gegenbauer      213 315
Differential equations, ordinary, second order, Green's functions      see "Green's functions"
Differential equations, ordinary, second order, Hermite      211 295—296
Differential equations, ordinary, second order, hypergeometric      306
Differential equations, ordinary, second order, indicial equation      297—298
Differential equations, ordinary, second order, integral representations, method of solution      301—303 308 317 325
Differential equations, ordinary, second order, Jacobi      212 314
Differential equations, ordinary, second order, linear      260—332
Differential equations, ordinary, second order, Riemann      304
Differential equations, ordinary, second order, series solution about ordinary point      292
Differential equations, ordinary, second order, series solution about regular singular point      296
Differential equations, ordinary, second order, singular points, classification      291—292
Differential equations, ordinary, second order, Weber — Hermite      321
Differential equations, partial      333—373
Differential equations, partial, boundary conditions      see "Boundary conditions"
Differential equations, partial, Cauchy — Kovalevska theorem      334
Differential equations, partial, characteristics      336
Differential equations, partial, diffusion equation      see "Diffusion equation"
Differential equations, partial, Green's functions      see "Green's functions"
Differential equations, partial, images, method of      362
Differential equations, partial, Laplace equation      see "Laplace equation"
Differential equations, partial, linear      333
Differential equations, Partial, order of      333
Differential equations, wave equation      see "Wave equation"
Differential operators      255 266—267 269—272 286
Differential operators, domain of      116 269—270
Differential operators, formal      266
Differential operators, formal adjoint      267
Differential operators, Hermitian      270 272 286
Differential operators, self-adjoint      267—272
Differential operators, separable      365
Diffusion equation      336 344 352 358
Diffusion equation, Green's function for      352—353
Diffusion equation, uniqueness of solution of      358
Dimension of a linear vector space      119
Dirichlet boundary conditions      272 341 346
Dirichlet boundary conditions and solution of Laplace's equation in spherical coordinates      372—373
Dirichlet boundary conditions, exterior Dirichlet problem      355 372—373
Dirichlet boundary conditions, interior Dirichlet problem      345—346 355 362—364 372—373
Dispersion relations      82
Distance      109—111 181—183 see
Distributions      see "Generalized functions"
Divergence of a vector function      see "Vector analysis"
Dual space      108
Dual vectors      107—108
Eigenvalue      120
Eigenvalue equation      119—120 161—162 166 170 244 254 286—288
Eigenvalue equation, generalized      121 see
Eigenvalue, generalized      121 see
Eigenvector      120
Eigenvector, generalized      121 see
Einstein summation convention      128
Elliptic differential equations      336 see partial" "Harmonic "Laplace "Poisson
Entire functions      22 see
Error function      322
Essential singularity of a function, isolated      51—52
Euler kernel      303 308
Euler's integral, of first kind      96
Euler's integral, of second kind      95 see
Expansions of functions in Fourier series      216—223
Expansions of functions in Fourier — Bessel series      332
Expansions of functions in orthogonal series, general theory      191—196
Expansions of functions in series of orthogonal polynomials      215—216
Expansions of functions in series of spherical harmonics      369
Exponential function      23
Fourier coefficients      195
Fourier series      216—223
Fourier transforms      223—225
Fourier transforms in N—dimensions      346
Fourier transforms of generalized functions      232
Fourier — Bessel series      332
Fourier — Bessel series of imaginary argument      324
Fourier — Bessel series of second kind or Neumann functions      323
Fourier — Bessel series of third kind or Hankel functions      324
Fourier — Bessel series, generating function for      326
Fourier — Bessel series, integral representations for      325
Fourier — Bessel series, modified      324
Fourier — Bessel series, recurrence relations between      325
Fourier — Bessel series, series representations      322
Fourier—Bessel series      332
Fuchsian equations      303 see "Riemann
Function space, definition      180 see " b)$"/>
Functional, linear      107
Functions (definition)      8
Functions, analytic (definition)      22 see
Functions, Bessel      see "Bessel functions"
Functions, beta      96
Functions, confluent hypergeometric      see "Confluent hypergeometric function"
Functions, continuity of      9
Functions, delta      see "Delta function"
Functions, differentiable      12—17
Functions, entire      22
Functions, equivalent      191
Functions, exponential and related      23
Functions, fairly good      227
Functions, gamma      see "Gamma function"
Functions, Gegenbauer      315
Functions, generalized      see "Generalized functions"
Functions, good      227
Functions, Green's      see "Green's functions"
Functions, Hankel      see "Bessel functions"
Functions, harmonic      15 356—357
Functions, hyperbolic      24
Functions, hypergeometric      see "Hypergeometric function"
Functions, invariant      148
Functions, Jacobi      see "Jacobi functions"
Functions, Legendre      see "Legendre functions"
Functions, logarithmic      24—25 66—70
Functions, meromorphic      see "Meromorphic functions"
Functions, multivalued      see "Multivalued functions"
Functions, Neumann      see "Bessel functions"
Functions, of complex argument      11
Functions, of several complex variables      98—101
Functions, orthogonal expansions of      see "Expansions of functions"
Functions, parabolic cylinder      321
Functions, polynomials      22 203—216 also "Orthogonal
Functions, primitive      20
Functions, single-valued      21
Functions, tensor      148
Functions, WEIGHT      181 203 207—208 267 272
Fundamental theorem of algebra      86
Fundamental theorem of integral calculus      20
Gamma function      94—98
Gamma function, asymptotic behavior, Stirling's approximation      98
Gamma function, integral representations      94 95
Gauss' integral      58—59
Gauss' theorem, in 3 dimensions      356
Gauss' theorem, in N dimensions      348
Gegenbauer equation      213 315
Gegenbauer function      315
Gegenbauer polynomials      208 213
Gegenbauer polynomials, relation to associated Legendre functions      367
Gegenbauer polynomials, relation to hypergeometric function      315
Generalized functions      225—237
Generalized functions, delta function      235—237
Generalized functions, differentiation of      231
Generalized functions, Fourier transform of      232
Generalized functions, local value of      229
Gradient      17 see
Green's functions      273—291 348—355 362—364
Green's functions for linear partial differential equations with constant coefficients      351—355
Green's functions for partial differential equations      348—355 362—364
Green's functions for second order ordinary linear differential equations      273—291
Green's functions, adjoint      274
Green's functions, diffusion equation      352—353
Green's functions, eigenfunction expansion      288
Green's functions, generalized      284
Green's functions, Poisson's equation      351—352
Green's functions, singular part of      350—355
Green's functions, wave equation      353—355
Green's identities, first and second      356
Green's identity      269 349
Green's identity, generalized      267 348
Hamilton — Cayley theorem      158
Hankel functions      see Bessel functions
Harmonic functions      15 356—357
Hermite polynomials      207 211 321
Hermite's equation      211 295—296
Hermitian matrices      141 170—178
Hermitian matrices, diagonalization of      170—175
Hermitian matrices, simultaneous diagonalization of two      177—178
Hermitian operators      116 120 124
Hermitian operators, completely continuous      244
Hermitian operators, differential      270 272 286—288
Hermitian operators, eigenvalue equations for      120—121 124 170 244 254 286—288
Hermitian operators, integral      252 254
Hilbert space      196—197 see " b)$"/>
Hilbert theorem on integral operators      254
Homographic transformations      27—29 see
Hyperbolic differential equations      336 see partial" "Wave
Hypergeometric equation      306
Hypergeometric equation, Kummer's solutions of      307
Hypergeometric equation, Riemann P-symbol      304—306 see "Hypergeometric "Riemann
Hypergeometric function      306—316
Hypergeometric function, Euler formula      310
Hypergeometric function, integral representations for      308—312
Hypergeometric function, related functions      314—316
Hypergeometric function, relations between      312—314
Hypergeometric function, symmetry property of      307
Hypergeometric series      306—307 see
Images, method of      362
Indicial equation      298
Infinity, point at      28
integral      see "Contour integrals" "Lebesgue "Riemann
Integral operators      251—254 273 287
Integral representations      39 40 301
Integral representations and solutions of differential equations      301
Integral representations for Bessel functions      see Bessel functions
Integral representations for confluent hypergeometric function      see "Confluent hypergeometric function"
Integral representations for gamma function      see "Gamma function"
1 2
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå