Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Dennery P., Krzywicki A. — Mathematics for Physicists
Dennery P., Krzywicki A. — Mathematics for Physicists



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Mathematics for Physicists

Авторы: Dennery P., Krzywicki A.

Аннотация:

Excellent text provides thorough background in mathematics needed to understand today’s more advanced topics in physics and engineering. Topics include theory of functions of a complex variable, linear vector spaces, tensor calculus, Fourier series and transforms, special functions, more. Rigorous theoretical development; problems solved in great detail. Bibliography. 1967 edition.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1996

Количество страниц: 398

Добавлена в каталог: 17.04.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Integral representations for hypergeometric function      see "Hypergeometric function"
Integral representations, Cauchy's      37
Integral representations, kernels of      39 40 303
Integral representations, Poisson's      47—48
Interval, closed      5
Interval, open      5
inversion      27. see also "Conformal transformations"
Inversion of a matrix      132—133
Irregular singular point of a differential equation      292
Isolated point of a set      4
Isolated singular point of a differential equation      292
Isolated singular point of a function      22 51—52 see
Jacobi equation      212 314
Jacobi functions of the first kind      314
Jacobi functions of the second kind      315
Jacobi polynomials      207 212
Jacobi polynomials, relation to hypergeometric function      314
Jordan canonical form of a matrix      165
Jordan's lemma      56—57
Kernel of an integral operator      252
Kernel of an integral representation      39 40
Kernel of an integral representation, Cauchy's      40
Kernel of an integral representation, Euler's      303
Kernel of an integral representation, Laplace's      303
Kernel of an integral representation, Mellin      303
Kovalevska theorem      see "Cauchy — Kovalevska" theorem
Kronecker delta      124
Lagrange identity      267 348
Laguerre equation      212
Laguerre polynomials      207 212
Laguerre polynomials, relation to confluent hypergeometric function      321
Laplace kernel      303 317
Laplace's equation      15
Laplace's equation in 2—dimensions with Dirichlet boundary conditions      345—346
Laplace's equation in 3—dimensions with Dirichlet or Neumann boundary conditions      355
Laplace's equation in spherical coordinates      365
Laplace's equation uniqueness of solution of      345—346 355
Laplace's equation, separation of variables      365—373
Laplace's formula      367
Laurent series      48
Lebesgue integral      184
Lebesgue measure      187—189
Legendre equation      214 316
Legendre functions, associated      366—368
Legendre functions, associated, and Gegenbauer polynomials      367
Legendre functions, associated, and spherical harmonics      368
Legendre functions, associated, orthogonality of      367
Legendre functions, of the first kind      316
Legendre polynomials      208 213—214 316 see "Spherical
Linear independence of vectors      118—119
Liouville formula      263
Lipschitz condition      258
Logarithmic function      24—25 66—69
Logarithmic function, principal logarithm      25
Logarithmic function, Riemann surface for      69
Matrix, adjoint      140
Matrix, algebra      129—132
Matrix, and change of basis      134—135 142
Matrix, canonical form of      165
Matrix, characteristic equation      158
Matrix, column      132
Matrix, definition      129
Matrix, diagonalization of      166 170
Matrix, hermitian      141 see
Matrix, inverse of      132—133
Matrix, irreducible      158
Matrix, orthogonal      152 176
Matrix, rectangular      156—157
Matrix, reducible      158
Matrix, row      138
Matrix, simultaneous diagonalization      177
Matrix, trace of      136
Matrix, transposed      140
Matrix, unit      131
Matrix, unitary      141
Maximum-minimum properties of analytic functions      41
Maximum-minimum properties of harmonic functions      42 357
Maximum-minimum properties of solutions of diffusion equation      359—360
Measure      184
Measure, Lebesgue      187—189
Mellin kernel      303
Meromorphic functions      84—86
Meromorphic functions, Mittag — Leffler expansion      84
Metric spaces      109—111 181 241
Mittag — Leffler expansion      84
Morera theorem      43
Multiplicity of a root      87
Multivalued functions      65—75
Multivalued functions, branch cut      67
Multivalued functions, branch points      67 69
Multivalued functions, integrals involving      74
Multivalued functions, Riemann sheet      69
Multivalued functions, Riemann surface      69—70 71 73
Neighborhood      4
Neumann boundary conditions      272 341 346 356
Neumann boundary conditions, exterior Neumann problems      356
Neumann boundary conditions, interior Neumann problems      356
Neumann function      see "Bessel functions"
Null space of an operator      155
Null vector      104 105
Operators, adjoint      116
Operators, algebra of      113—114
Operators, bounded      241
Operators, commutation of      113
Operators, commutation of, and diagonalization of matrices      177
Operators, completely continuous      see "Completely continuous operators"
Operators, differential      see "Differential operators"
Operators, domain of      112
Operators, finite-dimensional      242
Operators, Green's      273 287
Operators, Hermitian      see "Hermitian operators"
Operators, integral      see "Integral operators"
Operators, inverse      115
Operators, left      114
Operators, linear      112
Operators, norm of      240—241
Operators, projection      117—118
Operators, range of      112
Operators, right      114
Operators, unitary      116 178
Orthogonal basis in arbitrary vector space      193
Orthogonal basis in N—dimensional space      139
Orthogonal matrix      152 176
Orthogonal polynomials      203—216
Orthogonal polynomials, differential equations for      209—210 211—215
Orthogonal polynomials, expansions in series of      215—216
Orthogonal polynomials, recurrence relations      208—209 211—215 see "Hermite" "Jacobi" "Laguerre" "Legendre" "Tchebichef
Orthogonal vectors      106
Orthogonalization, theorem      124
P-symbol (Riemann's)      304—306
Parabolic cylinder functions      321
Parabolic differential equations      336 see partial" "Diffusion
Parametric equations of a curve      18
Parseval relation      195 224
Plancherel theorem      224
Plemelj formulae      64
Point at infinity      28
Point of accumulation      4
Point, interior      4
Point, isolated      4
Point, regular of a function      22
Point, singular of a differential equation      see "Singular point of a differential equation"
Point, singular of a function      see "Singular point of a function"
Poisson equation      351
Poisson equation, quasi-linear      335 337
Poisson equation, separation of variables      364—373
Poisson equation, types of      336 see "Characteristics" "Uniqueness
Poisson equation, uniqueness theorem, for diffusion equation      358
Poisson's equation      351
Poisson's integral representation      47—48
Poisson's solution of wave equation      362
Pole of an analytic function      51
Power series      23 45
Principal value of an integral      61
Pseudotensor      150
Quadratic forms      175—177
Recurrence relations for Bessel functions      325
Recurrence relations for orthogonal polynomials      208—209 211—215
Region      5 78
Region, multiply-connected      33
Region, simply-connected      33
Regular curve      18
Regular point of a function      22
Regular singular point of a differential equation      292
Representations of linear operators      128 147 251 266 269
Representations of vectors      127 136 180 249
Residues and Laurent expansion      55
Residues of a function      53
Residues, theorem of      53—54
Riemann equation      304 see
Riemann integral      185—186
Riemann P-symbol      304—306
Riemann surface      see "Multivalued functions"
Riesz — Fisher theorem      190
Rodrigues formula, for Legendre polynomials      213
Rodrigues formula, generalized      205
Rotation of a vector function (curl)      see "Vector analysis"
Rotations      150—151
Saddle point method      see "Steepest descent method"
scalar      136
Scalar function      148
Scalar product      106 107 139 181 190 see
Schmidt orthogonalization method      125
Schwarz inequality      see "Cauchy — Schwarz inequality"
Schwarz reflection principle      81
Separation of variables, method of      364—373
Series, infinite      10—11 44 see "Laurent "Taylor
Sets      1—5
Sets, accumulation point of      4
Sets, closed      5
Sets, compact, of vectors      239
Sets, difference of      2
Sets, elements of      1
Sets, empty      3
Sets, Enumerable      4
Sets, identity of      2
Sets, inclusion      2
Sets, interior point of      5
Sets, intersection of      2
Sets, isolated point of      4
Sets, nonenumerable      4
Sets, open      5
Sets, sum of      2
Singular points of a differential equation      292
Singular points of a function      22
Singular points of a function, isolated      22 51—52 69—70
Singular points of a function, isolated, branch point      67 69—70
Singular points of a function, isolated, essential singularity      51—52
Singular points of a function, isolated, pole      51
Space metric      see "Metric spaces"
Space of functions, definition      180
Space, $L^{2}_{w}(a,\ b)$ definition      190
Space, complete      183
Space, decomposition of      159
Space, dual      108
Space, Hilbert      196—197
Space, linear vector (definition)      104
Space, n-dimensional      126—178
Space, null      155
Space, real      108 see
Spherical harmonics      368—371
Spherical harmonics and solution of Laplace's equation in spherical coordinates      373
Steepest descent, method of      87—92 328
Step function      235
Stirling's approximation for the gamma function      98
Stokes' phenomenon      321
Sturm — Liouville problem      286—288
Subspaces      117 154
Subspaces, direct sum of      161
Subspaces, invariant      155
Taylor series      45—47
Tchebichef polynomials      208 214—215
Tensor      138 143—154
Tensor, antisymmetric      147
Tensor, functions      148
Tensor, indices, contraction of      145
Tensor, indices, dummy      146
Tensor, indices, lowering and raising of      147
Tensor, metric      144
Tensor, pseudo      150
Tensor, rank of      138
Tensor, symmetric      147
Tensor, types of      138
Trace, of a matrix      136
Triangle inequality      109—110
Trigonometric functions      23—24
Trigonometrical series      see "Fourier series"
Uniqueness theorems for differential equations      259 279 292 334 355
Unitary matrix      141
Unitary matrix, diagonalization of      178
Unitary operator      116
Variation of constants, method      262—263
Vector (definition)      104
Vector, algebra      104
Vector, analysis      152—154
Vector, components of      119 138
Vector, dual      107—108
Vector, length (norm) of      110
Vector, null      104—105
Vector, represented by a column matrix      132
Vector, represented by a row matrix      138
Vector, space      see "Space linear
Wave equation      336 341—343 346 353—355 360—362
Wave equation, Green's function for      353
Wave equation, Poisson's solution of      362
Wave equation, uniqueness of solution of      360—362
Weber — Hermite differential equation      321
Weierstrass criterion for uniform convergence of series      11
Weierstrass theorem on essential singularities of analytic functions      52
Weierstrass theorem on term-by-term differentiation of series of analytic functions      45
Weierstrass theorem, generalized      202
Weierstrass theorem, on approximation of functions      200
wronskian      261
Zeros of analytic functions      50
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте