| 
		        
			        |  |  
			        |  |  
					| Àâòîðèçàöèÿ |  
					|  |  
			        |  |  
			        | Ïîèñê ïî óêàçàòåëÿì |  
			        | 
 |  
			        |  |  
			        |  |  
			        |  |  
                    |  |  
			        |  |  
			        |  |  |  | 
		|  |  
                    | Dennery P., Krzywicki A. — Mathematics for Physicists |  
                    |  |  
			        |  |  
                    | Ïðåäìåòíûé óêàçàòåëü |  
                    | |  space and Hilbert space      197 
  space, definition      190 Accumulation point      4
 Algebra of linear operators      113—114
 Algebra of matrices      129—132
 Algebra of vectors      104
 Algebra, fundamental theorem of      86
 Analytic completion      101
 Analytic continuation      76—82
 Analytic continuation, along a curve      76—78
 Analytic continuation, basic theorem on      76
 Analytic continuation, Schwarz reflection principle      81
 Analytic functions      1—101
 Analytic functions and power series      23 45
 Analytic functions at a point      22
 Analytic functions in a region      22
 Analytic functions of several complex variables      98 334
 Analytic functions, derivatives of      40
 Analytic functions, local behavior of      41
 Analytic functions, zeros of      50
 and classification of isolated singular points      51
 Associated Legendre functions      see "Legendre functions"
 Asymptotic expansion      92—93
 Asymptotic expansion for Bessel functions of large argument      330
 Asymptotic expansion for Bessel functions of large order      328 see method" "Stokes
 Asymptotic expansion for confluent hypergeometric function      319—320
 Asymptotic expansion for gamma function      98
 Basis of a space      119 193 197
 Basis of a space and set of eigenvectors of an operator      162 244 254 288
 Basis of a space, change of      134
 Bessel functions      322—332
 Bessel functions and confluent hypergeometric function      322
 Bessel functions of first kind      322
 Bessel functions, asymptotic behavior      328
 Bessel inequality      192
 Bessel's equation      322
 beta function      96
 Bolzano — Weierstrass theorem      238
 boundary conditions      258 334 341—346
 Boundary conditions and types of partial differential equations      341—346 see "Uniqueness
 Boundary conditions, adjoint      268
 Boundary conditions, Cauchy's      334 346
 Boundary conditions, Dirichlefs      272 341 346
 Boundary conditions, homogeneous      259
 Boundary conditions, inhomogeneous      260
 Boundary conditions, Neumann's      272 341 346
 Boundary conditions, periodic      272
 Branch cut      67
 Branch point      67 69—70
 Cauchy criterion for uniform convergence      10
 Cauchy theorem      34
 Cauchy — Kovalevska theorem      334
 Cauchy — Liouville theorem      42
 Cauchy — Lipschitz theorem      259
 Cauchy — Riemann conditions      15
 Cauchy — Schwarz inequality      108 182
 Cauchy's boundary conditions      334 346 see "Uniqueness
 Cauchy's integral formula      37
 Cayley — Hamilton theorem      158
 Characteristic equation      158
 Characteristics      336
 Compact operators      see "Completely continuous operators"
 Compact set of vectors      239
 Completely continuous operators      243 244 252—254 287
 Completeness of a set of functions      199
 complex numbers      5—7
 Complex plane      6
 Components of a vector      119 138
 Components of a vector, transformation of      135 137 see
 Confluent hypergeometric equation      316
 Confluent hypergeometric function      317
 Confluent hypergeometric function, asymptotic behavior      319—320
 Confluent hypergeometric function, functions related to      321
 Confluent hypergeometric function, integral representations      317—318
 Confluent hypergeometric function, series representations      318
 Conformal transformations      25—33
 Conformal transformations and change of integration variable      29
 Conformal transformations and point at infinity      28
 Conformal transformations, conformal mapping      27
 Conformal transformations, homographic transformations      27—29
 Continuity of a function      9
 Contour integrals      18—21
 Contour integrals and calculus of residues      53—60
 Contour integrals and Riemann integrals      20 see "Cauchy "Darboux
 Contour integrals of multivalued functions      74—75
 Contour integrals, change of integration variable      29
 Contraction of tensors      145
 Convergence of sequence of functions      9
 Convergence of sequence of functions, uniform      9
 Convergence of sequence of functionsin the mean      191
 Darboux inequality      21
 Delta function      235—237
 Delta function in N—dimensions      346—347 see
 Delta, Kronecker's      124
 Difference equations      254
 Differentiability of functions of a complex variable      12—16
 Differentiability of functions of a complex variable, Cauchy — Riemann conditions      15
 Differentiability of functions of a complex variable, sufficiency conditions for      15
 Differential equations, for Laplace equation      345—346 355
 Differential equations, for wave equation      360 see
 Differential equations, ordinary      257—332
 Differential equations, ordinary, boundary conditions      see "Boundary conditions"
 Differential equations, ordinary, Cauchy — Lipschitz theorem      259
 Differential equations, ordinary, homogeneous      257
 Differential equations, ordinary, inhomogeneous      257
 Differential equations, ordinary, linear      257
 Differential equations, ordinary, second order of Fuchs type      303
 Differential equations, ordinary, second order, Bessel      322
 Differential equations, ordinary, second order, confluent hypergeometric      316
 Differential equations, ordinary, second order, fundamental set of solutions      262
 Differential equations, ordinary, second order, Gegenbauer      213 315
 Differential equations, ordinary, second order, Green's functions      see "Green's functions"
 Differential equations, ordinary, second order, Hermite      211 295—296
 Differential equations, ordinary, second order, hypergeometric      306
 Differential equations, ordinary, second order, indicial equation      297—298
 Differential equations, ordinary, second order, integral representations, method of solution      301—303 308 317 325
 Differential equations, ordinary, second order, Jacobi      212 314
 Differential equations, ordinary, second order, linear      260—332
 Differential equations, ordinary, second order, Riemann      304
 Differential equations, ordinary, second order, series solution about ordinary point      292
 Differential equations, ordinary, second order, series solution about regular singular point      296
 Differential equations, ordinary, second order, singular points, classification      291—292
 Differential equations, ordinary, second order, Weber — Hermite      321
 Differential equations, partial      333—373
 Differential equations, partial, boundary conditions      see "Boundary conditions"
 Differential equations, partial, Cauchy — Kovalevska theorem      334
 Differential equations, partial, characteristics      336
 Differential equations, partial, diffusion equation      see "Diffusion equation"
 Differential equations, partial, Green's functions      see "Green's functions"
 Differential equations, partial, images, method of      362
 Differential equations, partial, Laplace equation      see "Laplace equation"
 Differential equations, partial, linear      333
 Differential equations, Partial, order of      333
 Differential equations, wave equation      see "Wave equation"
 Differential operators      255 266—267 269—272 286
 Differential operators, domain of      116 269—270
 Differential operators, formal      266
 Differential operators, formal adjoint      267
 Differential operators, Hermitian      270 272 286
 Differential operators, self-adjoint      267—272
 Differential operators, separable      365
 Diffusion equation      336 344 352 358
 Diffusion equation, Green's function for      352—353
 Diffusion equation, uniqueness of solution of      358
 Dimension of a linear vector space      119
 Dirichlet boundary conditions      272 341 346
 Dirichlet boundary conditions and solution of Laplace's equation in spherical coordinates      372—373
 Dirichlet boundary conditions, exterior Dirichlet problem      355 372—373
 Dirichlet boundary conditions, interior Dirichlet problem      345—346 355 362—364 372—373
 Dispersion relations      82
 
 | Distance      109—111 181—183 see Distributions      see "Generalized functions"
 Divergence of a vector function      see "Vector analysis"
 Dual space      108
 Dual vectors      107—108
 Eigenvalue      120
 Eigenvalue equation      119—120 161—162 166 170 244 254 286—288
 Eigenvalue equation, generalized      121 see
 Eigenvalue, generalized      121 see
 Eigenvector      120
 Eigenvector, generalized      121 see
 Einstein summation convention      128
 Elliptic differential equations      336 see partial" "Harmonic "Laplace "Poisson
 Entire functions      22 see
 Error function      322
 Essential singularity of a function, isolated      51—52
 Euler kernel      303 308
 Euler's integral, of first kind      96
 Euler's integral, of second kind      95 see
 Expansions of functions in Fourier series      216—223
 Expansions of functions in Fourier — Bessel series      332
 Expansions of functions in orthogonal series, general theory      191—196
 Expansions of functions in series of orthogonal polynomials      215—216
 Expansions of functions in series of spherical harmonics      369
 Exponential function      23
 Fourier coefficients      195
 Fourier series      216—223
 Fourier transforms      223—225
 Fourier transforms in N—dimensions      346
 Fourier transforms of generalized functions      232
 Fourier — Bessel series      332
 Fourier — Bessel series of imaginary argument      324
 Fourier — Bessel series of second kind or Neumann functions      323
 Fourier — Bessel series of third kind or Hankel functions      324
 Fourier — Bessel series, generating function for      326
 Fourier — Bessel series, integral representations for      325
 Fourier — Bessel series, modified      324
 Fourier — Bessel series, recurrence relations between      325
 Fourier — Bessel series, series representations      322
 Fourier—Bessel series      332
 Fuchsian equations      303 see "Riemann
 Function space, definition      180 see "
 ![]() b)$"/> Functional, linear      107
 Functions (definition)      8
 Functions, analytic (definition)      22 see
 Functions, Bessel      see "Bessel functions"
 Functions, beta      96
 Functions, confluent hypergeometric      see "Confluent hypergeometric function"
 Functions, continuity of      9
 Functions, delta      see "Delta function"
 Functions, differentiable      12—17
 Functions, entire      22
 Functions, equivalent      191
 Functions, exponential and related      23
 Functions, fairly good      227
 Functions, gamma      see "Gamma function"
 Functions, Gegenbauer      315
 Functions, generalized      see "Generalized functions"
 Functions, good      227
 Functions, Green's      see "Green's functions"
 Functions, Hankel      see "Bessel functions"
 Functions, harmonic      15 356—357
 Functions, hyperbolic      24
 Functions, hypergeometric      see "Hypergeometric function"
 Functions, invariant      148
 Functions, Jacobi      see "Jacobi functions"
 Functions, Legendre      see "Legendre functions"
 Functions, logarithmic      24—25 66—70
 Functions, meromorphic      see "Meromorphic functions"
 Functions, multivalued      see "Multivalued functions"
 Functions, Neumann      see "Bessel functions"
 Functions, of complex argument      11
 Functions, of several complex variables      98—101
 Functions, orthogonal expansions of      see "Expansions of functions"
 Functions, parabolic cylinder      321
 Functions, polynomials      22 203—216 also "Orthogonal
 Functions, primitive      20
 Functions, single-valued      21
 Functions, tensor      148
 Functions, WEIGHT      181 203 207—208 267 272
 Fundamental theorem of algebra      86
 Fundamental theorem of integral calculus      20
 Gamma function      94—98
 Gamma function, asymptotic behavior, Stirling's approximation      98
 Gamma function, integral representations      94 95
 Gauss' integral      58—59
 Gauss' theorem, in 3 dimensions      356
 Gauss' theorem, in N dimensions      348
 Gegenbauer equation      213 315
 Gegenbauer function      315
 Gegenbauer polynomials      208 213
 Gegenbauer polynomials, relation to associated Legendre functions      367
 Gegenbauer polynomials, relation to hypergeometric function      315
 Generalized functions      225—237
 Generalized functions, delta function      235—237
 Generalized functions, differentiation of      231
 Generalized functions, Fourier transform of      232
 Generalized functions, local value of      229
 Gradient      17 see
 Green's functions      273—291 348—355 362—364
 Green's functions for linear partial differential equations with constant coefficients      351—355
 Green's functions for partial differential equations      348—355 362—364
 Green's functions for second order ordinary linear differential equations      273—291
 Green's functions, adjoint      274
 Green's functions, diffusion equation      352—353
 Green's functions, eigenfunction expansion      288
 Green's functions, generalized      284
 Green's functions, Poisson's equation      351—352
 Green's functions, singular part of      350—355
 Green's functions, wave equation      353—355
 Green's identities, first and second      356
 Green's identity      269 349
 Green's identity, generalized      267 348
 Hamilton — Cayley theorem      158
 Hankel functions      see Bessel functions
 Harmonic functions      15 356—357
 Hermite polynomials      207 211 321
 Hermite's equation      211 295—296
 Hermitian matrices      141 170—178
 Hermitian matrices, diagonalization of      170—175
 Hermitian matrices, simultaneous diagonalization of two      177—178
 Hermitian operators      116 120 124
 Hermitian operators, completely continuous      244
 Hermitian operators, differential      270 272 286—288
 Hermitian operators, eigenvalue equations for      120—121 124 170 244 254 286—288
 Hermitian operators, integral      252 254
 Hilbert space      196—197 see "
 ![]() b)$"/> Hilbert theorem on integral operators      254
 Homographic transformations      27—29 see
 Hyperbolic differential equations      336 see partial" "Wave
 Hypergeometric equation      306
 Hypergeometric equation, Kummer's solutions of      307
 Hypergeometric equation, Riemann P-symbol      304—306 see "Hypergeometric "Riemann
 Hypergeometric function      306—316
 Hypergeometric function, Euler formula      310
 Hypergeometric function, integral representations for      308—312
 Hypergeometric function, related functions      314—316
 Hypergeometric function, relations between      312—314
 Hypergeometric function, symmetry property of      307
 Hypergeometric series      306—307 see
 Images, method of      362
 Indicial equation      298
 Infinity, point at      28
 integral      see "Contour integrals" "Lebesgue "Riemann
 Integral operators      251—254 273 287
 Integral representations      39 40 301
 Integral representations and solutions of differential equations      301
 Integral representations for Bessel functions      see Bessel functions
 Integral representations for confluent hypergeometric function      see "Confluent hypergeometric function"
 Integral representations for gamma function      see "Gamma function"
 
 | 
 |  |  |  | Ðåêëàìà |  |  |  |  |  |