Авторизация
Поиск по указателям
Milnor J., Husemoller D. — Symmetric Bilinear Forms
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Symmetric Bilinear Forms
Авторы: Milnor J., Husemoller D.
Аннотация: The theory of quadratic forms and the intimately related theory of symmetric bilinear forms have a long and rich history, highlighted by the work of Legendre, Gauss, Minkowski, and Hasse. (Compare [Dickson] and [Bourbaki, 24, p. 185].) Our exposition will concentrate on the relatively recent developments which begin with and are inspired by Witt's 1937 paper "Theorie der quadratischen Formen in beliebigen Korpern." We will be particularly interested in the work of A. Pfister and M. Knebusch. However, some older material will be described, particularly in ChapterII. The presentation is based on lectures by Milnor at the Institute for Advanced Study, and at Haverford College under the Phillips Lecture Program, during the Fall of 1970, as well as lectures at Princeton University in 1966
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1973
Количество страниц: 146
Добавлена в каталог: 18.11.2009
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
(transpose of matrix) 3
(root systems) 28 31 139
(genus of ) 46 49
(orthogonal complement) 5
(units of ring) 4
(lattice) 27—29 31 35 44 47 103 139
, (inner product space specified by matrix) 3 4
20
, , 15 42 43
63 64
(volume) 16 31
Anisotropic space 56 112
Arason, J.K. 76
Arf, Cahit 112
Artin — Schreier theorem 60
Asymptotic estimates 17 31 35 50
Bachet de Meziriac 40
Bilinear form 1
Bilinear form module or space 2
Blichfeldt, H.F. 29 35
Braun, Hel 127 130
Characteristic two 56 82 100 112
Convex set 16
Convolution 55
Conway, J.H. 28 46
Cyclic Witt groups 23 66 69 87 99
Dedekind domains 7 91 93
Density of solutions 42
Density of packing 34
Determinant 4 12 16 115 119
Dirichlet, P.G.L. 98 129
Discrete valuation 84
Discriminant d of a Witt class 77
Discriminant of a field extension 107
Dual basis 4
Dual lattice 25 26 48 91 127
Dyadic prime 94
Dynkin diagram 139
Eichler, Martin 27
Eisenstein, Gotthold 18 45
Euler, Leonhard 39
Exterior power 12 107
Extreme lattice or matrix 29 38
Face centered cubic lattice 30 31 35
Fermat, Pierre de 39
Finite field 21 81 87 117
Fourier series 129
Fundamental domain 15
Fundamental ideal I 66
Gauss sums 51 127
Gaussian integers 39 95
Genus of symmetric bilinear form 43
Global field 120
Hasse invariant H 79
Hasse norm theorem 121
Hasse — Minkowski theorem 20 89 120
Hasse — Witt invariant h 80
Hermite, Charles 18
Hermitian form 114
Hilbert symbol 78 134
Hlawka, E. 32 46
Hyperbolic plane 9 12—13 101
I (fundamental ideal) 66
Ideal class group 93 95
Idele group 124
Indecomposable lattice 27
Indefinite bilinear form 21
Index of isotropy 57
Inertia theorem 23 61
Inner product 1
Inner product module or space 2
Integers 15 90
Integers of number field 94 107
Intersection number 100
Involution 114
Jacob son, Nathan 115 118
Jacobi, C.G.J. 23 45 61
Klein bottle 101
Knebusch, Manfred 12 14 85 95 127 131
Kneser, Martin 28
Korkine, Alexander ( = Korkin, Aleksandr) 28 29 38146
Lagrange, Joseph Louis 40
Lattice 15 91
Leech, John 28 35 135
Legendre symbol 43 51 132
Leicht, J. 65
Level s of a field 75
Local ring 6—8 14 68 86
Lorenz, Falko 65
Lusztig, g. 106
Mass (of genus) 49
Mathieu group 137
Meyer, Arnold 20
Milgram, James 25 127
Minimal vector 27
Minkowski, Hermann 16 20 31 41
Multiplicative inner product space 72
Niemeier, H.-V. 138
Nilpotent elements, nilradical 68 69 76
Norm (in various senses) 23 72 115 121
Number field 61 64 81 94 107 118
Ordering of field 59 67
Orientation 94 101 103
Orthogonal 2
Orthogonal sum, complement, basis 4—6
p-adic integers 21 25 42
p-adic numbers 20 81 89
Packing of euclidean space 34
Pfaffian 7
Pfister, A. 65 72 76
Positive definite 16 26 61
Projective module 2
Projective plane 101 103
Pythagorean field 71
Quadratic form 22 110
Quadratic inner product space 111
Quadratic reciprocity 132—134
Quaternion algebra 118
Radical 68 69 95
Radon — Nikodym theorem 42
Rank 3 11
Rational numbers 20 87
Real fields, real closure 60 71
Reflection 7 138
Regular hexagonal lattice 30 35
Represent 120 124
Residue class field 84
Residue class form 85
Rogers, C.A. 31 35
Root systems 31 138
Scharlau, Winfried 71 133
Self—dual lattice 46 91
Shoe box principle 21
Siegel, Carl Ludwig 44—49
Signature 23—25 62—64 69 127
Similarity transformation 29 76
Simple finite groups 28 137
Skew bilinear form 2
Smith, H.J.S. 28 41
Split inner product space 12
Springer, T.A. 85
Square theorem 124
Steinberg, Robert 47 78 81
Steinitz, Ernst 7 107
Stirling's formula 31
Sums of squares 39 41 45 74
Sylvester, J.J. 23 61
Symbol 78
Symmetric bilinear form 2
Symplectic basis 7 106
Symplectic bilinear form 2 7 105
Tensor product 10 47 73 111
Thompson, John 46
Thue, A. 35
Torsion in Witt ring 68 69 72
Torus 16 101
Totally positive 61 95
Totally real, imaginary 95
Type I, type II 22—25
Unimodular lattice 16
Valuation, valuation ring 84
van der Blij, F. 24 25
Vector bundles 105—107
Volume 15 34 42
Voronoi polyhedron 30
Weak approximation theorem 123
Weil, Andre 131—134
Witt ring of 23 90
Witt ring, Witt class 14 112 114
Witt rings of special fields 81 87 88
Witt, Ernst 8 28 84 137
Zolotareff, G. (= Zolotarev, E.I.) 28 38
Реклама