Авторизация 
		         
		        
					
 
		          
		        
			         
		          
		        
			        Поиск по указателям 
		         
		        
			        
					 
				        
					
			         
		          
		        
			         
		          
			
			         
		         
       		 
			         
		          
                
                    
                        
                     
                  
		
			         
		          
		        
			         
		          
		
            
	     
	    
	     
	    
	    
            
		 
                
                    Milnor J., Husemoller D. — Symmetric Bilinear Forms 
                  
                
                    
                        
                            
                                
                                    Обсудите книгу на научном форуме      
 Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter 
 
                                 
                                
                                    Название:   Symmetric Bilinear Forms 
Авторы:   Milnor J., Husemoller D.  
Аннотация:  The theory of quadratic forms and the intimately related theory of symmetric bilinear forms have a long and rich history, highlighted by the work of Legendre, Gauss, Minkowski, and Hasse. (Compare [Dickson] and [Bourbaki, 24, p. 185].) Our exposition will concentrate on the relatively recent developments which begin with and are inspired by Witt's 1937 paper "Theorie der quadratischen Formen in beliebigen Korpern." We will be particularly interested in the work of A. Pfister and M. Knebusch. However, some older material will be described, particularly in ChapterII. The presentation is based on lectures by Milnor at the Institute for Advanced Study, and at Haverford College under the Phillips Lecture Program, during the Fall of 1970, as well as lectures at Princeton University in 1966
 
Язык:   
Рубрика:  Математика / 
Статус предметного указателя:  Готов указатель с номерами страниц  
ed2k:   ed2k stats  
Год издания:  1973 
Количество страниц:  146 
Добавлена в каталог:  18.11.2009 
Операции:  Положить на полку  |
	 
	Скопировать ссылку для форума  | Скопировать ID 
                                 
                             
                        
                     
                 
                                                                
			         
	          
                
                    Предметный указатель 
                  
                
                    
                          (transpose of matrix)       3    
  (root systems)       28   31   139    
 (genus of  )       46   49    
  (orthogonal complement)       5    
  (units of ring)       4    
  (lattice)       27—29   31   35   44   47   103   139    
 ,   (inner product space specified by matrix)       3   4    
       20    
 ,  ,        15   42   43    
       63   64    
  (volume)       16   31    
Anisotropic space        56   112    
Arason, J.K.        76    
Arf, Cahit        112    
Artin — Schreier theorem        60    
Asymptotic estimates        17   31   35   50    
Bachet de Meziriac        40    
Bilinear form        1    
Bilinear form module or space        2    
Blichfeldt, H.F.        29   35    
Braun, Hel        127   130    
Characteristic two        56   82   100   112    
Convex set        16    
Convolution        55    
Conway, J.H.        28   46    
Cyclic Witt groups        23   66   69   87   99    
Dedekind domains        7   91   93    
Density   of solutions       42    
Density of packing        34    
Determinant        4   12   16   115   119    
Dirichlet, P.G.L.        98   129    
Discrete valuation        84    
Discriminant d of a Witt class        77    
Discriminant of a field extension        107    
Dual basis        4    
Dual lattice        25   26   48   91   127    
Dyadic prime        94    
Dynkin diagram        139    
Eichler, Martin        27    
Eisenstein, Gotthold        18   45    
Euler, Leonhard        39    
Exterior power        12   107    
Extreme lattice or matrix        29   38    
Face centered cubic lattice        30   31   35    
Fermat, Pierre de        39    
Finite field        21   81   87   117    
Fourier series        129    
Fundamental domain        15    
Fundamental ideal I        66    
Gauss sums        51   127    
Gaussian integers        39   95    
Genus of symmetric bilinear form        43    
Global field        120    
Hasse invariant H        79    
Hasse norm theorem        121    
Hasse — Minkowski theorem        20   89   120    
Hasse — Witt invariant h        80    
Hermite, Charles        18    
Hermitian form        114    
Hilbert symbol        78   134    
Hlawka, E.        32   46    
Hyperbolic plane        9   12—13   101    
I (fundamental ideal)        66    
Ideal class group        93   95    
Idele group        124    
Indecomposable lattice        27    
Indefinite bilinear form        21    
Index of isotropy        57    
Inertia theorem        23   61    
Inner product        1    
Inner product module or space        2    
Integers        15   90    
Integers of number field        94   107    
Intersection number        100    
Involution        114    
Jacob son, Nathan        115   118    
Jacobi, C.G.J.        23   45   61    
Klein bottle        101    
Knebusch, Manfred        12   14   85   95   127   131    
Kneser, Martin        28    
Korkine, Alexander ( = Korkin, Aleksandr)        28   29   38146    
Lagrange, Joseph Louis        40    
Lattice        15   91    
Leech, John        28   35   135    
Legendre symbol        43   51   132    
Leicht, J.        65    
Level s of a field        75    
Local ring        6—8   14   68   86    
Lorenz, Falko        65    
Lusztig, g.        106    
Mass (of genus)        49    
Mathieu group        137    
Meyer, Arnold        20    
Milgram, James        25   127    
Minimal vector        27    
Minkowski, Hermann        16   20   31   41    
Multiplicative inner product space        72    
Niemeier, H.-V.        138    
Nilpotent elements, nilradical        68   69   76      
Norm (in various senses)        23   72   115   121    
Number field        61   64   81   94   107   118    
Ordering of field        59   67    
Orientation        94   101   103    
Orthogonal        2    
Orthogonal sum, complement, basis        4—6    
p-adic integers        21   25   42    
p-adic numbers        20   81   89    
Packing of euclidean space        34    
Pfaffian        7    
Pfister, A.        65   72   76    
Positive definite        16   26   61    
Projective module        2    
Projective plane        101   103    
Pythagorean field        71    
Quadratic form        22   110    
Quadratic inner product space        111    
Quadratic reciprocity        132—134    
Quaternion algebra        118    
Radical        68   69   95    
Radon — Nikodym theorem        42    
Rank        3   11    
Rational numbers        20   87    
Real fields, real closure        60   71    
Reflection        7   138    
Regular hexagonal lattice        30   35    
Represent        120   124    
Residue class field        84    
Residue class form        85    
Rogers, C.A.        31   35    
Root systems        31   138    
Scharlau, Winfried        71   133    
Self—dual lattice        46   91    
Shoe box principle        21    
Siegel, Carl Ludwig        44—49    
Signature        23—25   62—64   69   127    
Similarity transformation        29   76    
Simple finite groups        28   137    
Skew bilinear form        2    
Smith, H.J.S.        28   41    
Split inner product space        12    
Springer, T.A.        85    
Square theorem        124    
Steinberg, Robert        47   78   81    
Steinitz, Ernst        7   107    
Stirling's formula        31    
Sums of squares        39   41   45   74    
Sylvester, J.J.        23   61    
Symbol        78    
Symmetric bilinear form        2    
Symplectic basis        7   106    
Symplectic bilinear form        2   7   105    
Tensor product        10   47   73     111    
Thompson, John        46    
Thue, A.        35    
Torsion in Witt ring        68   69   72    
Torus        16   101    
Totally positive        61   95    
Totally real, imaginary        95    
Type I, type II        22—25    
Unimodular lattice        16    
Valuation, valuation ring        84    
van der Blij, F.        24   25    
Vector bundles        105—107    
Volume        15   34   42    
Voronoi polyhedron        30    
Weak approximation theorem        123    
Weil, Andre        131—134    
Witt ring of        23   90    
Witt ring, Witt class        14   112   114    
Witt rings of special fields        81   87   88    
Witt, Ernst        8   28   84   137    
Zolotareff, G. (= Zolotarev, E.I.)        28   38    
                            
                     
                  
			 
		          
			Реклама