Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Courant R., Hilbert D. — Methods of Mathematical Physics. Volume 1
Courant R., Hilbert D. — Methods of Mathematical Physics. Volume 1



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Methods of Mathematical Physics. Volume 1

Àâòîðû: Courant R., Hilbert D.

ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 7-th edition

Ãîä èçäàíèÿ: 1966

Êîëè÷åñòâî ñòðàíèö: 578

Äîáàâëåíà â êàòàëîã: 17.02.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Abel's integral equation      158
Accumulation principle for functions      57
Adjoint differential expression      279 280
Adjoint orthogonal systems of unsymmetric kernels      159
Alternative theorem for integral equations      115
Alternative theorem for linear equations      6
Alternative theorem for ordinary differential equations      359
Analytic continuation      395
Approximation in the mean      52 54
Approximation theorem of Weierstrass      65
Argument function      168
Arzela's theorem      59
Associated Legendre functions      327 505
Asymptotic behavior of eigenvalues, in Sturm — Liouville problem      414
Asymptotic behavior of eigenvalues, of Bessel's equation      415
Asymptotic behavior of eigenvalues, of vibrating plate      460
Asymptotic behavior of solutions of the Sturm — Liouville problem      331—339
Asymptotic dimension of a sequence of functions      63
Asymptotic distribution of eigenvalues of a differential equation      429—445 460
Asymptotic expansions      522—535
Asymptotic expansions for Bessel and Hankel functions      524 532
Beats      390
Bessel functions      303—306 324—325 340 372 390—391 402 467
Bessel functions, asymptotic behavior of      332—334
Bessel functions, asymptotic representations of      524 532
Bessel functions, functional relation for      489
Bessel functions, integral representations for      474—82
Bessel functions, integral theorem for      340—341 490
Bessel functions, orthogonality relations for      305
Bessel functions, power series for      482—484
Bessel functions, relations between      485
Bessel functions, singularities of      501
Bessel functions, zeros of      451 492—496
Bessel transformation      490—492
Bessel's equation      303 467
Bessel's equation, asymptotic behavior of eigenvalues of      415
Bessel's equation, singularities of solutions of      501
Bessel's inequality for functions      51 425
Bessel's inequality for vectors      5
beta function      483
Bezout's theorem      520
Biharmonic equation      370
Bilinear forms      11—14
Bilinear forms, reciprocal      12
Bilinear forms, resolvents of      18. 29
Bilinear formula, for iterated kernels      137
Bilinear integral form      123
Bilinear relation      360
Biorthogonality relations      404
Boundary conditions for the rod      295
Boundary conditions for the string      291
Boundary conditions, containing a parameter      392—393 461
Boundary conditions, homogeneous and inhomogeneous      277
Boundary conditions, natural      208
Boundary, free      208
Brachistochrone      170 207
Broken extremals      259
Buckling, variational problem of      272
Calculus of perturbations      344
Calculus of variations      164—274
Calculus of variations, applied to eigenvalue problems      397—165
Calculus of variations, Fundamental Lemma of      185
Canonical differential equations      239
Canonical form of variational problems      238
Castigliano's principle      270
Catenary      172 218
Cayley's theorem      22 536—539
Characteristic values of a matrix      17
Closed systems of functions      110
Complete systems of functions      52 54
Completeness of a system of functions      110
Completeness of eigenfunctions of a differential equation      359—360 369 424
Completeness of Hermite polynomials      96—97
Completeness of Laguerre polynomials      96
Completeness of Legendre polynomials      82
Completeness of powers of x      65 101—102
Completeness of spherical harmonics      512—513
Completeness of systems of functions of several variables      56
Completeness of systems of vectors      4
Completeness of trigonometric functions      68
Completeness relation for functions      51
Completeness relation for vectors      5
Components of a function      51
Conduction of heat      311
Confocal rectangular parallelepiped      319
Conformal mapping      377
Conjugate potential functions      241
Conservation of momentum      265
Constrained systems, eigenvalues of      408
Constraints on quadratic forms      33 44
Constraints on variational problems      233
Continued fraction for the cotangent      489
Continuous dependence of eigen values and eigenfunctions on the kernel      151
Continuous spectrum      100 339—343
Convergence in the mean      98 110
Convergence theorems of Lebesgue      109—111
Cotangent, continued fraction for      489
Cylinder functions      see "Bessel functions" "Hankel "Mathieu "Neumann
Cylindrical domain      319
Darboux method      532—535
Definite kernels      123 162
Degeneracy of eigenvalues      129
Degenerate kernels      114—118 129
Degenerate quadratic forms      27
Dense function systems      100—101
Derivative, variational      186
Determinant inequality of Hadamard      36
Dido's problem      258
Differential equations, canonical      239
Differential equations, equivalence with integral equations      358—363
Differential equations, integral transformations applied to      466—468
Dimension number, asymptotic      63
Dini's theorem      57
Dipole      514—15
Direct solution of variational problems      174—183
Dirichlet's discontinuous factor      81
Dirichlet's integral formula      78
Dirichlet's problem      240
Dirichlet's problem for the circle      179
Discontinuous factor of Dirichlet      81
Discontinuous kernels      152
Discrete spectrum      130
Divergence expressions      195
du Bois-Reymond, theorem of      200
Eigenfrequency      283
Eigenfunctions for rectangular membrane      301
Eigenfunctions of a differential equation, nodes of      451—455
Eigenfunctions of a differential equation, nodes of, completeness of      424
Eigenfunctions of a kernel      113
Eigenfunctions of a kernel, minimum properties of      161
Eigenfunctions of symmetric kernels      126—132 148—150
Eigenfunctions, continuous dependence on kernel      151
Eigenfunctions, Kellogg's method for      156
Eigenfunctions, nodes of      300 302 304 395 451—455 458 463
Eigenfunctions, zeros of      451—455
Eigenvalue problems for closed surfaces      461
Eigenvalue problems of mathematical physics      275—396
Eigenvalue problems of Schroedinger type      445—450
Eigenvalue problems with two parameters      460
Eigenvalue problems, definition of      309
Eigenvalue problems, variational methods for      397—165
Eigenvalues for the membrane      298
Eigenvalues for the plate, asymptotic behavior of      460
Eigenvalues for the rod      296
Eigenvalues for the string      287
Eigenvalues of a constrained system      408
Eigenvalues of a differential equation for a subdomain      408—409
Eigenvalues of a differential equation, asymptotic distribution of      429—445 460
Eigenvalues of a differential equation, continuity of      418—424
Eigenvalues of a differential equation, dependence on boundary conditions      410—411
Eigenvalues of a differential equation, dependence on coefficients      411
Eigenvalues of a differential equation, extremum properties of      398—407
Eigenvalues of a differential equation, infinite growth of      412
Eigenvalues of a differential equation, maximum-minimum property of      405
Eigenvalues of a differential equation, minimum properties of      459
Eigenvalues of a kernel      113 132 137
Eigenvalues of a matrix      17 26
Eigenvalues of a positive definite kernel      132
Eigenvalues of a symmetric kernel      148—150
Eigenvalues of a symmetric kernel, first      122—125
Eigenvalues of a symmetric kernel, maximum-minimum property of      132—134
Eigenvalues of a symmetric kernel, totality of      126—132
Eigenvalues of a unitary matrix      46
Eigenvalues of Bessel's equation, asymptotic behavior of      415
Eigenvalues of functions of a kernel      157
Eigenvalues of functions of a matrix      22
Eigenvalues of infinite multiplicity      154 395
Eigenvalues of Sturm — Liouville problem, asymptotic behavior of      414
Eigenvalues, continuous dependence on kernel      151
Eigenvalues, degenerate      129
Eigenvalues, minimum-maximum property      31 132—134 405
Eigenvalues, multiple      113 129
Eigenvalues, negative      294 416
Eigenvalues, reciprocal      17
Eigenvectors      24
Eigenvectors, use in solving linear equations      30
Eigenvibrations      283 310
Eigenvibrations of homogeneous string      287
Elastic bodies      268
Electrostatics      267
Elementary divisors of a matrix      45
Ellipsoidal coordinates      226
Elliptic coordinates      319 391—392
Elliptic functions      227
Energy integral      265
Energy, kinetic      242
Energy, potential      242
Enskog's method for symmetric integral equations      156
Equicontinuous functions      58 114 119 125
Equilibrium conditions of a mechanical system      243
Equilibrium problems      308
Erdmann vertex condition      260
Euler equations      183—207
Euler equations for isoperimetric problem      207
Euler equations, homogeneous form of      196
Euler equations, integration of      206
Euler equations, invariance of      222
Euler expression, identical vanishing of      193
Euler integral      483
Euler transformation      467
Expansion theorem      310
Expansion theorem for definite kernels      138—140
Expansion theorem for differential equations      360—361 427—428
Expansion theorem for iterated kernels      137
Expansion theorem for spherical harmonics      513
Expansion theorem for symmetric integral equations      134—136
Expansion theorem, limits of validity of      395—396
Expansions, asymptotic      522 535
Extrema, Weierstrass's theorem on      20 164
Extremals      185
Extremals, broken      259
Extremum properties of eigenvalues      398—407
Fejer's summation theorem      102
Fermat's principle      165
Finite differences      176
First variation      184 208—214
Fischer — Riesz theorem      110
Forced motion of the membrane      300
Forced motion of the string      289 294
Forced vibrations      285 389
Form factor      286
Forms      see "Particular type of form"
Fourier coefficients      51 424
Fourier coefficients, order of magnitude of      74
Fourier integral      77—82 98—100
Fourier integral theorem      78
Fourier series      69—77
Fredholm formulas      142—147
Fredholm's theorems for arbitrary kernels      118—122 150
Fredholm's theorems for degenerate kernels      115—118
Fredholm's theorems, Schmidt's derivation of      155
Free boundaries      208
Free vibrations      282—283
Friedrichs transformation      234
Function space      57
Function space, gradient in      222
Functionals      167—169
Functions of a kernel, eigenvalues of      157
Functions of a matrix, eigenvalues of      22
Fundamental domain      48 112
Fundamental lemma of the calculus of variations      185
Fundamental solution      370
Fundamental solution of an ordinary differential equation      353
Fundamental tone      286
Generalized Green's function      356—357
Generating function for Hermite and Laguerre polynomials      510
Generating function for spherical harmonics      539—541
Geodesic curves      170 189 213
Gibbs' phenomenon      105—107
Gradient in function space      222
Gram determinant of a system of functions      62 107—108
Gram determinant of a system of vectors      34—36
Gram — Schmidt orthogonalization process      4 60
Green's formula      278—280
Green's function      311 351—388
Green's function as kernel of an integral equation      358
Green's function for a circular ring      306—388
Green's function for Hermite's equation      373—375
Green's function for Laguerre's equation      375—376
Green's function for ordinary differential equations      351—363
Green's function for ordinary differential equations of higher order      362—363
Green's function for ordinary differential equations, construction of      354—355
Green's function for ordinary differential equations, definition of      352—353
Green's function for the biharmonic equation      370
Green's function for the potential equation      363—370 377
Green's function for the potential equation in space      378—384
Green's function for the potential equation in the plane      384—386
Green's function in the generalized sense      356—357
Green's function, construction by reflection      378—379 384
Green's function, examples of      371—388
Green's function, obtained by conformal mapping      377
Green's function, symmetry of      354
Green's tensors for systems of differential equations      393—394
Group, orthogonal      539
Haar, theorem of      203
Hadamard's inequality for determinants      36
Hamilton's variational principle      242
Hammerstein's theorem      162
Hankel functions      468—473
Hankel functions, asymptotic representations for      524—532
Hankel functions, integral representation of      476
Hankel functions, singularities of      501
Harmonic functions      see "Potential equation"
Heat conduction, equation of      311
Herglotz, theorem of      542
Hermite equation      508
Hermite equation, Green's function for      373—375
Hermite functions      508—509
Hermite orthogonal functions      154
Hermite polynomials      91—93 328
Hermite polynomials, completeness of      96—97
Hermite polynomials, generating function for      510
Hermitian forms      13 28
Hilbert space      55
Hilbert space, orthogonal transformations in      55
Holonomic conditions      221
Hurwitz's solution of the isoperimetric problem      97—98
Independence, measure of      61
Indicatrix      258
Inertial theorem for quadratic forms      28
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå