Авторизация
Поиск по указателям
Kincaid D., Cheney W. — Numerical analysis: mathematics of scientific computing
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Numerical analysis: mathematics of scientific computing
Авторы: Kincaid D., Cheney W.
Аннотация: This book has evolved over many years from lecture notes that accompany cer-
certain upper-division courses in mathematics and computer sciences at our university. These courses introduce students to the algorithms and methods that are commonly needed in scientific computing. The mathematical underpinnings of these methods
are emphasized as much as their algorithmic aspects. The students have been diverse: mathematics, engineering, science, and computer science undergraduates, as well as
graduate students from various disciplines. Portions of the book also have been used to lay the groundwork in several graduate courses devoted to special topics in numerical analysis, such as the numerical solution of differential equations, numerical
linear algebra, and approximation theory. Our approach has always been to treat the subject from a mathematical point of view, with attention given to its rich offering of
theorems, proofs, and interesting ideas. From these arise many computational procedures and intriguing questions of computer science. Of course, our motivation comes from the practical world of scientific computing, which dictates the choice of topics and the manner of treating each. For example, with some topics it is more instructive to discuss the theoretical foundations of the subject and not attempt to analyze algorithms in detail. In other cases, the reverse is true, and the students learn much from programming simple algorithms themselves and experimenting with them—although
we offer a blanket admonishment to use well-tested software, such as from program libraries, on problems arising from applications.
Язык:
Рубрика: Математика /Численные методы /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1991
Количество страниц: 690
Добавлена в каталог: 15.07.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
34 219
33—35
-norm 162 168
-norm 162 192
-norm 162 168
-notation 10 12
-cycle algorithm 628
-orthogonal 457
-orthogonality 459
a posteriori bounds 219
A-orthogonal 209
A-orthonormality 208
A-stability 569
Absolute error 41
Adams — Bashforth formula, fifth-order 509
Adams — Bashforth formula, fourth-order 514
Adams — Bashforth — Moulton, systems 529
Adams — Moulton formula, fifth- order 510
Adams — Moulton formula, fourth-order 514
Adaptive approximation 424
Adaptive quadrature 471
Adaptive quadrature, algorithm 475
Adaptive Runge — Kutta — Fehlberg, algorithm 505
Adaptive Runge — Kutta — Fehlberg, method 503
Aitken acceleration 231
Algorithm, see Pseudocode Aliasing 421 422
Antidifferentiation 443
Applications of B-splines 343
Approximate inverse 175
Approximating functions 278
Approximation formula, 433
Approximation formula, 433
Approximation sense of Sard 477
Associated matrix norm 163
Attraction, basin of 105
Autonomous 528 555 570
B-splines applications 343
B-splines, degree 0, 333
B-splines, degree 1, 334
Back substitution 127 145
Back substitution, permuted system 128
Backward SOR 194
Badly conditioned problems 48
Bairstow’s method 96
Bairstow’s method, algorithm 98
Barycentric interpolation formula 295
Basic feasible point 654
Basic functions 552
Basic Gaussian elimination 139
Basic vectors 551
Basin of attraction 105
Bernoulli numbers 358 468
Bernstein polynomials 289
Bessel functions 25 27 53 55
Bessel’s inequality 364
Best approximation 359
Big , functions and sequences 10
Binary system 28
Binomial coefficient 289
Birkhoff interpolation 307
Bisection method 57
Bisection method, algorithm 59
Bisection theorem 61
Boolean sum 387
Boundary-value problems 531 540 547 551
Bounded sequence 25
Boundedness 14
Branches 16
Canonical form 614
Carath odory’s Theorem 375
Cardinal functions 282 435
Cardinal property 386
Cartesian grid 385
Cartesian product 385
Cauchy criterion 82 172
Cauchy — Schwarz inequality 103 478
Chain rule 492
Change of intervals 449
Characteristic curves 598 599 606 614
Characteristic equation 187 228
Characteristic polynomial 21 228 557
Characteristics 606
Characteristics, alternative approach 613
Characterizing best approximations 372
Chebyshev acceleration 197
Chebyshev algorithm 201
Chebyshev Alternation Theorem 288 380
Chebyshev polynomial of the second kind 451
Chebyshev polynomials 285 366
Chebyshev solution of linear equations 376
Chebyshev theory 370
Chebyshev’s quadrature formulas 456
Cholesky factorization 130 133 154
Cholesky factorization, algorithm 134
Choosing nodes 287
Chopped to -digit approximation 6
Chopping 31
Classification, partial differential equations 607
Coarse grid 623
Coarse grid, correction scheme 628
Collocation 551 592
Column equilibration 177
Companion matrix 276
Complex Fourier series 410
Complex Newton’s method 105
Composite rule 445
Computer arithmetic 28
Condition number 51 52 165
Conditioning 51
conjugate 96 191 226
Conjugate direction methods 208
Conjugate gradient method 204 210
Conjugate gradient method, algorithm 210
Conjugate transpose 192 227 237
Consistent 517 636
Consistent systems 644
Continuation methods 108
Continued fractions 403
continuous 2
Continuous functions 13
contours 207
Contractive function/mapping 81
Contractive mapping theorem 82
Convergence 549
Convergence of interpolating polynomials 287
Convergence, linear 12
Convergence, order of 85
Convergence, quadratic 12
Convergence, sequences 9—11
Convergence, superlinear 12
Convergent method 517
Conversion of series to continued fractions 405
Convex 374
Convex combinations 374
Convex hull 374 638
Convexity 374 636
Cosine integral 357
Cramer’s Rule 303
Crank — Nicolson method 582
Critical set, crit ( ) 372
Crout’s factorization 130
Cube roots of unity 105
Cubic -splines 552
Cubic splines 317
Curvature 322
Damping of errors 625
Decimal system 28
Defective matrix 235
Deflation 92 239 274
Derivative 2
Derivatives, -splines 337
Deviation 359
Deviation array 425
Diagonal structure 126
Diagonalizable matrices 558
Diagonally dominant 152 319
Difference equations 20 22 50
Differentiable 2
Differentiation via polynomial interpolation 434
Diffusion equation 572
Dilogarithm function 357 497
Direct method for computing eigenvalues 228
Direct methods 181
Direction vector 207
Dirichlet problem 586 592
Discrete problem 587
Displacement operator 21
Distance from a function to a spline space 352
Divided differences 296 298
Divided differences with repetitions 311
Divided-difference properties 301
Doolittle’s factorization 130
Doolittle’s factorization, algorithm 131
Double-precision 30
Dual problem 649
Duality theory 649
Eigenvalue 187 227 555
Eigenvalue problem 226
Eigenvector 227 555
Elementary matrix 120
Elementary operations 118
Elementary row and column operations 275
Elliptic integral 497
Elliptic integral, second kind 496
Elliptic partial differential equations 607
Embedded Runge — Kutta procedures 505
Entire function 288
Equilibration 176
Equivalent systems 118 140
Error analysis 460 619
Error analysis, bisection method 61
Error analysis, functional iteration 84
Error analysis, Gaussian quadrature 460
Error analysis, Newton’s method 66
Error analysis, secant method 76
Error function, erf(x) 15 356 495
Error in polynomial interpolation 284
Error vector 166 174
Errors 494 502 583
Euclidean norm 162 192 227
Euler — Maclaurin formula 468 484
Euler’s formula 410
Euler’s method 113 495 566
Evaluation of functions 45 51
Excess in row 160
Exchange 383
Exchange method 382
Explicit functions 15
Explicit method 511 517 572 575
EXPONENT 29
Exponential integrals 54
Exponential polynomial 413 422
Extended-precision 30
Extrapolation 194
Extreme point 639
Extremum problem 359
Factor Theorem 89
Factorization phase 145
Factorization phase, algorithm 148
Factorizations 129
Factorizations 149
Farkas Theorem 643
Fast Fourier sine transformation 632
Fast Fourier Transform 409 414
Fast Fourier transform, algorithm 419
Fast methods for Poisson’s equation 631
Feasible point 113 648
Feasible set 113 648 652
Fibonacci sequence 19 54
Finite-difference method 547 574 586
Finite-element method 597
First-degree spline 424
First-order partial differential equations 598
First-variational equation 543
Fixed point 81
Floating-point arithmetic 31
Floating-point error analysis 35
floating-point numbers 28
Forward elimination 145
Forward SOR 194
Forward substitution 127
Forward substitution, permuted system 128
Fourier method 578
Fourier series 410
Fractal 106
Fresnel integral 357 496
Frobenius norm 169
Full pivoting 156
Fully implicit method 581
Functional iteration 80 511
Fundamental matrix 562
Fundamental polynomials for interpolation 444
Fundamental theorem of algebra 89 226
Galerkin method 591 620
Gauss — Jordan method 161
Gauss — Seidel method 182 189 589 624 629
Gaussian elimination, scaled row pivoting 145
Gaussian quadrature 456
Generalized eigenvalue problem 276
Generalized Pythagorean law 364
Gerschgorin’s theorem 240
Global errors 516
Global roundoff error 494
Global truncation error 494 520
Gram matrix 368
Gram — Schmidt process 246 365
Gram — Schmidt process, algorithm 247
Greatest lower bound, glb 14—15
Green’s function 536 537
Grid correction 627
Haar subspace 378
Hailey’s method 74
Half-space 642
Harmonic 592
Harmonic series 47
Heat equation 572 607
Hermite interpolation 305
Hermite’s quadrature formula 456
Hermitian 192 238
Hessenberg matrix 270
Heun’s method 500
Higher transcendental functions 355
Higher-degree natural spline 324
Higher-order divided differences 298
Higher-order ordinary differential equations 524
Hilbert matrix 53 369
Homotopy 108
Horner’s algorithm, complete 93
Horner’s method 14
Horner’s method, algorithm 41 91 280
Householder factorization 251 253
Householder transformations 251
Hyperbolic partial differential equations 607
Hyperbolic problems 616
Idempotent 267
Identity matrix 119
Ill-conditioned 51 52 167 283
Implicit function theorem 16
Implicit functions 15 68
Implicit method 512 571 580
Реклама