Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   

Поиск по указателям

Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics

Обсудите книгу на научном форуме

Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter

Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.


When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
Предметный указатель
$(C,\alpha)$-summation      379.M
$(F, F')$-free (compact oriented G-manifold)      431.G
$(l_p)$ or $l_p$ (a sequence space)      168.B
$(M_p)$, ultradistribution of class      125.U
$(S,(\mathfrak{E}))$-valued random variable      342.C
$100\alpha$%-point      396.C
$A(\alpha)$-stability      303.G
$A(\Omega)$ (the totality of functions bounded and continuous on the closure of $\Omega$ and holomorphic in $\Omega$)      168.B
$A_0$-stability      303.G
$A_p(\Omega)$ (the totality of functions f that are holomorphic in $\Omega$ and that satisfy $\int_{\Omega}|f(z)|^pdxdy<\infty$)      168.B
$B^s_{p,q}$ (Besov spaces)      168.B
$B_n$ set      22.D
$cos^{-1}$      131.E
$C^l(\Omega)$ (the totality of l times continuously differentiable functions in $\Omega$)      168.B
$C^l_0(\Omega)$ (the totality of functions in $C^l(\Omega)$ whose supports are compact subsets of $\Omega$)      168.B
$C^r$-$\Omega$-stable      126.H
$C^r$-conjugacy, $C^r$-conjugate      126.B
$C^r$-equivalence, $C^r$-equivalent      126.B
$C^r$-flow      126.B
$C^r$-foliation      154.G
$C^r$-function in a $C^\infty$-manifold      105.G
$C^r$-manifold      105.D
$C^r$-manifold compact      105.D
$C^r$-manifold paracompact      105.D
$C^r$-manifold with boundary      105.E
$C^r$-manifold without boundary      105.E
$C^r$-mapping      105.J
$C^r$-norm      126.H
$C^r$-structurally stable      126.H
$C^r$-structure      108.D
$C^r$-structure on a topological manifold      114.B
$C^r$-structure subordinate to (for a $C^s$-structure)      108.D
$C^r$-triangulation      114.C
$C^\infty$ topology, weak      401.C
$C^\infty$-function (of many variables)      58.B
$C^\infty$-function germ of (at the origin)      58.C
$C^\infty$-function preparation theorem for      58.C
$C^\infty$-function rapidly decreasing      168.B
$C^\infty$-function slowly increasing      125.O
$C^\infty$-functions and quasi-analytic functions      58
$C^\omega$-homomorphism (between Lie groups)      249.N
$C^\omega$-isomorphism (between Lie groups)      249.N
$c_1$-bundle      237.F
$c_1$-mapping      237.G
$C_i$-field      118.F
$C_i(d)$-field      118.F
$C_n$ set      22.D
$Ext^n_A(M,N)$      200.G
$Ext^n_R(A,B)$      200.K
$F_\sigma$ set      270.C
$G_\delta$-set      270.C
$H^l(\Omega)$ (Sobolev spaces)      168.B
$H^l_0(\Omega)$ (Sobolev spaces)      168.B
$H_p$ (Hardy spaces)      168.B
$Ind_ga$      297.G
$k'$-space      425.CC
$L_1$ -algebra (of a locally compact Hausdorff group)      36.L
$L_p (\Omega)$ (the space of measurable functions f(x) on $\Omega$ such that $|f(x)|^p$, $1\leq p \leq \infty$, is integrable)      168.B
$L_p$-space, abstract      310.G
$L_\infty(\Omega)$      168.B
$L_{(p, q)}(\Omega)$ (the Lorentz spaces)      168.B
$M(\Omega)$ (the set of all essentially bounded measurable functions on $\Omega$)      168.B
$m\timesn$ matrix      269.A
$PS_p(n,k)$(projective symplectic group over K)      60.L
$P^n(K)$ (projective space)      343.H
$P^r$-figure      343.B
$P_n$ set      22.D
$S(\Omega)$ (totality of measurable functions on $\Omega$ that take finite value almost everywhere)      168.B
$S*$-number      430.C
$SC^p$-manifold      178.G
$sin^{-1}$      131.E
$Spin^C$ bundle      237.F
$s^h$-factorial experiment      102.H
$tan^{-1}$      131.E
$Tor^A_n(M, N)$      200.D
$Tor^R_n(A, B)$      200.K
$T^2$-statistic Hotelling’s      280.B
$T^2$-statistic noncentral Hotelling      374.C
$T_1$ -uniform space      436.C
$T_1$-uniformity      436.C
$T_2$-topological group      423.B
$U*$-number      430.C
$u_i$-scale      19.D
$W*$-algebra      308.C
$weak*$ Dirichlet algebra      164.G
$W_p^l(\Omega)$ (Sobolev space)      168.B
$x^\lambda_+$ (distribution)      125.EE
$x_i$-axis (of a Euclidean space)      140
$\alpha$-capacity      169.C
$\alpha$-excessive function      261.D
$\alpha$-limit point      126.D
$\alpha$-limit set (of an orbit)      126.D
$\alpha$-perfect, $\alpha$-perfectness      186.J
$\alpha$-point (of a meromorphic function)      272.B
$\alpha$-pseudo-orbit      126.J
$\alpha$-quartile      396.C
$\alpha$-string      248.L
$\alpha$-trimmed mean      371.H
$\bar{\partial}$-cohomology groups      72.D
$\bar{\partial}$-complex      72.D
$\beta$      see beta
$\beta$-KMS state      402.G
$\beta$-shadowed      126.J
$\beta$-traced      126.J
$\chi$-equivalent (closed on G-manifolds)      431.F
$\Delta$      see Delta
$\delta$-measure      270.D
$\Delta$-refinement (of a covering)      425.R
$\Delta^1_n$-set      22.D
$\gamma$      see gamma
$\Gamma$-equivalent (points)      122.A
$\Gamma$-extension      14.L
$\gamma$-matrices, Dirac      415.G
$\gamma$-perfect      186.J
$\gamma$-perfectness      186.J
$\gamma$-point of the kth order (of a holomorphic function)      198.C
$\Gamma$-structure      90.D 105.Y
$\Gamma^r_q$-structure      154.E
$\Gamma_\mathscr{S}$-foliation      154.H
$\Gamma_\mathscr{S}$-structure      154.H
$\hat{\mathscr{A}}$-characteristic class (of a real oriented vector bundle)      237.F
$\kappa$-recursiveness      356.G
$\lambda$-function      32.C
$\Lambda^s$ (Lipschitz spaces)      168.B
$\mathbf{A}$-number      430.C
$\mathbf{B}$-complete (locally convex space)      424.X
$\mathbf{C}$ (complex numbers)      74.A 294.A
$\mathbf{F}_q$ (finite field with q elements)      450.Q
$\mathbf{NP}$      71.E
$\mathbf{NP}$ co-      71.E
$\mathbf{NP}$-complete      71.E
$\mathbf{NP}$-completeness      71.E
$\mathbf{NP}$-hard      71.E
$\mathbf{NP}$-space      71.E
$\mathbf{NP}$-time      71.E
$\mathbf{NR}$ (neighborhood retract)      202.D
$\mathbf{N}$ (natural numbers)      294.A 249.B
$\mathbf{Q}$ (rational numbers)      294.A 294.D
$\mathbf{R}$ (real numbers)      294.A 355.A
$\mathbf{R}$-action (continuous)      126.B
$\mathbf{R}^n$-valued random variable      342.C
$\mathbf{T}$-number (transcendental number)      430.C
$\mathbf{T}*$-number (transcendental number)      430.C
$\mathbf{T}_0$-space      425.Q
$\mathbf{T}_1$-space      425.Q
$\mathbf{T}_2$-space      425.Q
$\mathbf{T}_3$-space      425.Q
$\mathbf{T}_4$-space      425.Q
$\mathbf{T}_5$-space      425.Q
$\mathbf{T}_6$-space      425.Q
$\mathbf{Z}$ (integers)      294.A 294.C
$\mathbf{Z}$-action (continuous)      126.B
$\mathbf{Z}$-action of class $C^r$      126.B
$\mathbf{Z}_1$-extension      14.L
$\mathbf{Z}_1$-extension basic      14.L
$\mathbf{Z}_1$-extension cyclotomic      14.L
$\mathfrac{c}$ (a sequence space)      168.B
$\mathfrak{B}$-measurable function      270.J
$\mathfrak{B}$-measurable set      270.C
$\mathfrak{B}$-regular measure      270.F
$\mathfrak{B}$-summable series      379.O
$\mathfrak{E}$-function      46.C
$\mathfrak{E}$-space      193.N
$\mathfrak{f}$-metric      136.F
$\mathfrak{f}_N$-metric      136.F
$\mathfrak{g}$-lattice (of a separable algebra)      27.A
$\mathfrak{g}$-lattice integral      27.A
$\mathfrak{g}$-lattice normal      27.A
$\mathfrak{O}$-differential (on an algebraic curve)      9.F
$\mathfrak{O}$-genus (of an algebraic curve)      9.F
$\mathfrak{o}$-ideal integrated two-sided      27.A
$\mathfrak{o}$-ideal two-sided      27.A
$\mathfrak{O}$-linearly equivalent divisors (on an algebraic curve)      9.F
$\mathfrak{O}$-specialty index (of a divisor of an algebraic curve)      9.F
$\mathfrak{o}_l$-ideal, left      27.A
$\mathfrak{o}_r$-ideal, right      27.A
$\mathfrak{p}$-adic exponential valuation      439.F
$\mathfrak{p}$-adic extension (of the field of quotients of a Dedekind domain)      439.F
$\mathfrak{P}$-function, Weierstrass      134.F App. Table
$\mathfrak{p}$-index (of a central simple algebra over a finite algebraic number field)      29.G
$\mathfrak{p}$-invariant (of a central simple algebra over a finite algebraic number field)      29.G
$\mathfrak{p}$-primary ideal      67.F
$\mathfrak{X}$-minimal function      367.E
$\mathfrak{X}$-valued holomorphic      251.G
$\mathscr{B}(\Omega)$ ($=\mathscr{D}_{L_I}(\Omega))$      168.B
$\mathscr{B}(\Omega)$ (the space of hyperfunctions)      125.V
$\mathscr{C}$-group      52.M
$\mathscr{C}$-theory, Serre      202.N
$\mathscr{D}'(\Omega)$      125.B
$\mathscr{D}(\Omega)$      125.B 168.B
$\mathscr{D}_{L_p}(\Omega)$ (the totality of functions $\mathfrak{f}(x)$ in $C^\infty(\Omega)$ such that for all $\alpha$, $D^\alpha f(x)$ belongs to $L_p(\Omega)$ with respect to Lebesgue measure)      168.B
$\mathscr{D}_{{M_p}}$, $\mathscr{D}_{(M_p)}$      168.B
$\mathscr{D}_{{M_p}}'$, $\mathscr{D}_{(M_p)}'$      125.U
$\mathscr{E}'(\Omega)$      125.I
$\mathscr{E}(\Omega)$( = $C^\infty(\Omega)$)      125.I 168.B
$\mathscr{E}_{{M_p}}$, $\mathscr{E}_{(M_p)}$      168.B
$\mathscr{O}$-module      383.I
$\mathscr{O}(\Omega)$ (space of holomorphic functions in $\Omega$)      168.B
$\mathscr{O}_p(\Omega)$      168.B
$\mathscr{P}$-acyclic      200.Q
$\mathscr{S}$ (the totality of rapidly decreasing $C^\infty$-functions)      168.B
$\mathscr{S}'$ (the totality of tempered distributions)      125.N
$\mu$-absolutely continuous (additive set function)      380.C
$\mu$-completion      270.D
$\mu$-conformal function      352.B
$\mu$-constant stratum      418.E
$\mu$-integrable      221. B
$\mu$-measurable      270.D
$\mu$-null set      370.D
$\mu$-operator, bounded      356.B
$\mu$-singular (additive set function)      380.C
$\Omega$-conjugate      126.H
$\omega$-connected space      79.C
$\omega$-connected space, locally      79.C
$\omega$-consistent (system)      156.E
$\Omega$-equivalent      126.H
$\Omega$-explosion      126.J
$\Omega$-group      190.E
$\Omega$-homomorphism (between $\Omega$-groups)      190.E
$\Omega$-isomorphism (between $\Omega$-groups)      190.E
$\omega$-limit point      126.D
$\omega$-limit set      126.D
$\Omega$-modules, duality theorem for      422.L
$\Omega$-stability theorem      126.J
$\Omega$-stable, $C^r$-      126.H
$\Omega$-subgroup (of an $\Omega$-group)      190.E
$\partial$-functor      200.I
$\partial$-functor universal      200.I
$\partial*$-functor      200.I
$\Pi$ theorem      116
$\pi$ topology      424.R
$\pi$-group      151.F
$\pi$-length (of a group)      151.F
$\pi$-manifold      114.I
$\pi$-series(of a group)      151.F
$\pi$-solvable group      151.F
$\Pi^1_1$ set      22.A
$\Pi^1_n$ set      22.D
$\rho$-set      308.I
$\sigma$-additive measure      270.D
$\sigma$-additivity      270.D
$\sigma$-algebra      270.B
$\sigma$-algebra optional      407.B
$\sigma$-algebra predictable      407.B
$\sigma$-algebra tail      342.G
$\sigma$-algebra topological      270.C
$\sigma$-algebra well-measurable      407.B
$\sigma$-compact space      425.V
$\sigma$-complete (vector lattice)      310.C
$\sigma$-complete lattice      243.D
$\sigma$-complete lattice conditionally      243.D
$\sigma$-discrete (covering of a set)      425.R
$\sigma$-field Bayer sufficient      396.J
$\sigma$-field boundedly complete      396.E
$\sigma$-field complete      396.E
$\sigma$-field D-sufficient      396.J
$\sigma$-field decision theoretically sufficient      396.J
$\sigma$-field minimal sufficient      396.F
$\sigma$-field pairwise sufficient      396.F
$\sigma$-field test sufficient      396.J
$\sigma$-finite (measure space)      270.D
$\sigma$-function, of Weierstrass      134.F App. Table
$\sigma$-locally finite covering (of a set)      425.R
$\sigma$-process (of a complex manifold)      72.H
$\sigma$-space      425.Y
$\sigma$-subfield necessary      396.E
$\sigma$-subfield sufficient      396.E
$\sigma$-weak topology      308.B
$\Sigma^1_1$ set      22.A
$\Sigma^1_n$ set      22.D
$\tau$-function      150.D
$\varepsilon$ (topology)      424.R
$\varepsilon$, Eddington’s      App. A Table
$\varepsilon$-covering      273.B
$\varepsilon$-entropy      213.E
$\varepsilon$-expansion      111.C
$\varepsilon$-factor      450.N
$\varepsilon$-flat      178.D
$\varepsilon$-Hermitian form      60.O
$\varepsilon$-independent partitions      136.E
$\varepsilon$-induction, axiom of      33
$\varepsilon$-neighborhood (of a point)      273.C
$\varepsilon$-number      312.C
$\varepsilon$-operator, Hilbert      411.J
$\varepsilon$-quantifier, Hilbert      41J J
$\varepsilon$-sphere (of a point)      273.C
$\varepsilon$-symbol, Hilbert      411.J
$\varepsilon$-tensor product      424.R
$\varepsilon$-theorem (in predicate logic)      411J
$\varepsilon$-trace form      60.O
$\varphi$-subsequence      354.E
${M_p}$, ultradistribution of class      125.U
$|\mathfrak{B}|$-summable series      379.0
(B,N)-pair      151.J
(DF)-space      424.P
(F)-space      424.I
(H, p)-summable      379.M
(LF)-space      424.W
(M)-space (= Montel space)      424.O
(n + 2)-hyperspherical coordinates      79.A 90.B
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте