Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Commutor      368.E
Comonad      200.Q
Compact $C^r$-manifold      105.D
Compact (continuous mapping)      286.D
Compact (kernel distribution)      125.L
Compact (linear operator)      68.B
Compact (topological space)      425.S
Compact algebraic group, k-      13.G
Compact cardinal number strongly      33.E
Compact cardinal number weakly      33.E
Compact complex manifolds, family of      72.G
Compact element (of a topological Abelian group)      422.F
Compact foliation      154.H
Compact form (of a complex semisimple Lie algebra)      248.P
Compact group      69.A
Compact homotopy class      286.D
Compact leaf      154.D
Compact linearly      422.L
Compact locally linearly      422.L
Compact metric space      273.F
Compact open $C^\infty$ topology      279.C
Compact operators      68
Compact real Lie algebra      248.P
Compact real simple Lie algebra classical      248.T
Compact real simple Lie algebra exceptional      248.T
Compact real-      425.BB
Compact relatively (linear operator)      331.B
Compact relatively (maximum likelihood method)      399.M
Compact relatively (subset)      273.F 425.S
Compact sequentially      425.S
Compact set      425.S
Compact set in a metric space      273.F
Compact set relatively      399.M 425.S
Compact set, uniform convergence on      435.C
Compact simple Lie group classical      249.L
Compact simple Lie group exceptional      249.L
Compact space      425.S
Compact space $\sigma$-      425.V
Compact space countably      425.S
Compact space locally      425.V
Compact space real-      425.BB
Compact space sequentially      425.S
Compact space uniformly locally      425.V
Compact support (singular q-cochain)      201.P
Compact type (symmetric Riemannian homogeneous space)      412.D
Compact uniformly locally      425.V
Compact weakly (linear operator)      68.M
Compact, $\sigma$-      425.V
Compact, T-      68.F 331.B
Compact-open topology      279.C 435.D
Compactification (of a complex manifold)      72.K
Compactification (of a Hausdorff space)      207.A
Compactification (of a topological space)      425.T
Compactifying (kernel)      125.L
Compactifying Aleksandrov      207.C
Compactifying Bohr      18.H
Compactifying F-      207.C
Compactifying Kerekjarto — Stoilow      207.C
Compactifying Kuramochi      207.C
Compactifying Martin      207.C
Compactifying one-point (of a topological space)      425.T
Compactifying Royden      207.C
Compactifying Stone — Cech      207.C425.T
Compactifying Wiener      207.C
Compactifying, resolutive      207.B
Compactness theorem (in model theory)      276.E
Compactum, dyadic      79.D
Companion matrix      301.I
Comparability theorem for cardinal numbers      49.B
Comparison test (for convergence)      379.B
Comparison theorem (in the theory of differential equations)      316.E
Comparison theorem metric      178.A
Comparison theorem triangle      178.A
Comparison, paired      346.C
compass      179.A
Compatible with $C^r$-structure      114.B
Compatible with a triangulation (a $C^r$-structure)      114.C
Compatible with composition      409.C
Compatible with operation (of an operator domain)      277.C
Compatible with operations in a linear space      256.F
Compatible with the multiplication of a group      190.C
Compatible with topology      436.H
Compiler      75.C
Complement (in lattice theory)      42.A 243.E
Complement (in set theory)      381.B
Complement (of a decision problem)      71.B
Complement conjecture, knot      235.B
Complement orthogonal (of a subset of a Hilbert space)      197.E
Complement relative (of two sets)      381.B
Complement theorem      382.B
Complement theorem Chapman’s      382.B
Complementary analytic set      22.A
Complementary degenerate series      437.W
Complementary degree      200.J
Complementary event      342.B
Complementary law of reciprocity      14.O
Complementary law of the Jacobi symbol      297.I
Complementary law of the Legendre symbol, first      297.I
Complementary law of the Legendre symbol, second      297.I
Complementary modulus (in Jacobi elliptic functions)      134.J App. Table
Complementary series      437.W
Complementary set      381.B
Complementary slackness, Tucker theorem on      255.B
Complementary submodule      277.H
Complementary subspace (of a linear subspace)      256.F
Complementation, law of (in a Boolean algebra)      42.A
Complemented (Banach space)      37.N
Complemented lattice      243.E
Completable topological group      423.H
Complete $\sigma$- (vector lattice)      310.C
Complete $\sigma$-field      396.E
Complete $\sigma$-field boundedly      396.E
Complete (Abelian p-group)      2.D
Complete (algebraic variety)      16.D
Complete (increasing family of $\sigma$-algebras)      407.B
Complete (logical system)      276.D
Complete (metric space)      273.J
Complete (ordinary differential equation)      126.C
Complete (predicate)      356.H
Complete (recursively enumerable set)      356.D
Complete (set of closed formulas)      276.F
Complete (statistics)      396.E
Complete (system of axioms)      35.B
Complete (system of orthogonal functions)      317.A
Complete (topological group)      423.H
Complete (uniform space)      436.G
Complete (valuation)      439.D
Complete (vector lattice)      310.C
Complete (wave operator)      375.B
Complete (Zariski ring)      284.C
Complete accumulation point      425.O
Complete additive group      2.E
Complete additivity (of a measure)      270.D
Complete additivity (of the Lebesgue integral)      221.C
Complete additivity theorem, Pettis      443.G
Complete analytic space, K-      23.F
Complete at o (in the theory of deformation)      72.G
Complete B-(locally convex space)      424.X
Complete bipartite graph      186.C
Complete blocks      102.B
Complete capture      420.D
Complete class      398.B
Complete class essentially      398.B
Complete class minimal      398.B
Complete class theorems      398.D
Complete cohomology theory      200.N
Complete distributive law (in a lattice-ordered group)      243.G
Complete elliptic integral      App. A Table
Complete elliptic integral of the first kind      134.B
Complete elliptic integral of the second kind      134.C
Complete form, theorem on      356.H
Complete free resolution (of $\mathbf{Z}$)      200.N
Complete fully (locally convex space)      424.X
Complete graph      186.C
Complete holomorphically (domain)      21.F
Complete hyperbolic manifolds      21.O
Complete induction      294.B
Complete integrability condition      428.C
Complete intersection      16.A
Complete lattice      243.D
Complete lattice $\sigma$-      243.D
Complete lattice conditionally      243.D
Complete linear system defined by a divisor      16.N
Complete linear system on an algebraic curve      9.C
Complete linear system on an algebraic variety      16.N
Complete local ring      284.D
Complete local ring, structure theorem of      284.D
Complete manifold, weakly 1-      21.L
Complete mapping      241.B
Complete maximum principle      338.M
Complete measure      270.D
Complete measure space      270.D
Complete metric space      273.J
Complete NP-      71.E
Complete observation      405.C.D
Complete orthogonal system      217.G
Complete orthonormal set (Hilbert space)      197.C
Complete orthonormal system      217.G
Complete orthonormal system of fundamental functions      217.G
Complete pivoting      302.B
Complete predicate      356.H
Complete product measure space      270.H
Complete quadrangle      343.C
Complete quasi- (locally convex space)      424.F
Complete reducibility theorem, Poincare      3.C
Complete Reinhardt domain      21.B
Complete residue system modulo m      297.G
Complete ring (with respect to an ideal I)      16.X
Complete scheme, k-      16.E
Complete set      241.B
Complete solution (of partial differential equations)      320.C
Complete space      436.G
Complete space Cech      425.T 436.I
Complete space Dieudonne      436.I
Complete space holomorphically      23.F
Complete space topologically      436.I
Complete system of axioms      35.B
Complete system of independent linear partial differential equations      324.C
Complete system of inhomogeneous partial differential equations      428.C
Complete system of nonlinear partial differential equations      428.C
Complete valuation      439.D
Complete vector lattice      310.C
Complete vector lattice $\sigma$-      310.C
Complete weakly 1-, manifold      21.L
Complete Zariski ring      284.C
Completely additive (arithmetic function)      295.B
Completely additive (measure)      270.D 270.E
Completely additive (vector measure)      443.G
Completely additive class      270.B
Completely additive set function      380.C
Completely continuous operator      68.B
Completely integrable      154.B
Completely integrable (system of indepsndent 1- forms)      428.D
Completely integrally closed (ring)      67.I
Completely monotonic function      240.E 240.K
Completely multiplicative number-theoretic function      295.B
Completely nonunitary      251.M
Completely normal space      425.Q
Completely passive      402.G
Completely positive      36.H
Completely positive entropy      136.E
Completely primary ring      368.H
Completely randomized design      102.A
Completely reducible A-module      277.H
Completely reducible group      190.L
Completely reducible linear representation      362.C
Completely regular space      425.Q
Completely unstable flow      126.E
Completeness (for a Cartan connection)      80.N
Completeness (of a logical system)      276.D
Completeness (of the predicate calculus)      411.J
Completeness asymptotic      150.D
Completeness NP-      71.E
Completeness of real numbers      294.E 355.B
Completeness of scattering states      150.D 386.B
Completeness theorem Goedel      411.J
Completeness, theorem of (in geometry)      155.B
Completion $\mathfrak{a}$-adic (of an R-module)      284.B
Completion $\mu$-      270.D
Completion of a $T_2$-topological group      423.H
Completion of a field (with respect to a valuation)      439.D
Completion of a measure space      270.D
Completion of a metric space      273.J
Completion of a ring along an ideal      16.X
Completion of a uniform space      436.G
Completion of a valuation      439.D
Completion of a valuation ring (of a valuation)      439.D
Completion of an ordered set      243.D
Completion of Spec(A) along V(I)      16.X
COMPLEX      362.F
Complex algebraic variety      16.T
Complex analytic fiber bundle      147.O
Complex analytic function      198.H
Complex analytic manifold      72.A
Complex analytic structure (in a complex manifold)      72.A
Complex analytic submanifold      72.A
Complex cobordism group      114.H
Complex cobordism ring      114.H
Complex conjugate bundle      147.F
Complex conjugate representation      362.F
Complex dimension (of a complex manifold)      72.A
Complex form (of a real Lie algebra)      248.P
Complex form (on a Fourier series)      159.A
Complex function      165.B
Complex Gaussian      176.B
Complex Gaussian process      176.C
Complex Gaussian random variable      176.B
Complex Gaussian system      176.B
Complex Grassmann manifold      199.B
Complex group (over a field)      60.L
Complex Hermitian homogeneous space      199.A
Complex Hilbert space      197.B
Complex interpolation space      224.C
Complex Lie algebra      248.A
Complex Lie algebra of a complex Lie group      249.M
Complex Lie group      249.A
Complex line bundle      72.F
Complex line bundle determined by a divisor      72.F
Complex linear space      256.A
Complex manifold(s)      72
Complex manifold(s) almost      72.B
Complex manifold(s) compact, family of      72.G
Complex manifold(s) isomorphic      72.A
Complex manifold(s) stably almost      114.H
Complex manifold(s) weakly almost      114.H
Complex multiplication      73
Complex number plane      74.C
complex numbers      74.A 294.F
Complex numbersconjugate      74.A
Complex of lines      110.B
Complex orthogonal group      60.I
Complex orthogonal matrix      269.J
Complex plane      74.C
Complex projective space      343.E
Complex projective space infinite-dimensional      56
Complex quadratic form      348.A 348.B
Complex representation (of a Lie group)      249.O
Complex simple Lie algebra classical      248.S
Complex simple Lie algebra exceptional      248.S
Complex simple Lie group classical      249.M
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте