Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Eilenberg — MacLane complexes      70.F
Eilenberg — MacLane space      70.F
Eilenberg — MacLane spectrum      202.T
Eilenberg — Postnikov invariants (of a CW complex)      70.G
Eilenberg — Steenrod axioms      201.Q
Eilenberg — Zilber theorem      201.J
Eilenberg, Samuel(1913-)      31.r 52.r 70.E—G 70.r 75.r 91.r 200.K 200.M 200.O 200.r 201.A 201.C 201.E 201.G 201.J 201.Q 202.B 202.T 210.r 277.r 305.A 426.* 426.r
Einstein convention (on tensors)      256.J
Einstein metric      364.I
Einstein relation (in diffusion)      1 8.A
Einstein space      364.D App. Table
Einstein summation convention      417.B
Einstein — Kaehler metric      232.C
Einstein, A.      129
Einstein, Albert(1879-1955)      45.A 109 129 132.A 137 150.A 256.J 285.A 351.A 359.A 359.B 359.D 359.r 364.D 364.I 434.C 434.r App.A Table
Eisenberg, Edmund(?-1965)      292.D
Eisenhart, Luther Pfahler(1876-1965)      109.* 109.r 111.r 417.r
Eisenstein series      32.C
Eisenstein series generalized      450.T
Eisenstein theorem      337.F
Eisenstein — Poincare series      32.F
Eisenstein, Ferdinand Gotthold Max(1823-1852)      14.O 32.C 32.F 296.A 337.F 339.E 450.T
Ejiri, Norio(1953-)      275.A 364.F 365.G 391.C
Elastic limit      271.G
Elastic scattering      375.A
Elastic, total, cross section      386.B
Elasticity modulus of, in shear      271.G
Elasticity modulus of, in tension      271.G
Elasticity small-displacement theory of      271.G
Elasticity, theory of      271.G
Elation      110.D
Eldel’man, Samuil Davidovich(1921-)      112.B 327.H
Electric displacement      130.A
electric field      130.A
Electric flux density      130.A
Electric network      282.B
Electric polarization      130.A
Electric susceptibility      130.B
Electric waves      130.B
Electric waves transverse      130.B
Electrodynamics, quantum      132.C
Electromagnetic wave      446
Electromagnetic wave transverse      130.B
Electromagnetic wave, theory of      130.B
Electromagnetism      130
Electron      377.B
Electronic analog computer      19.E
Electronic computer      75.A
Electrostatics      130.B
Element(s)      381. A
Element(s) affine arc      110.C
Element(s) areal (in a Cartan space)      152.C
Element(s) atomic (in a complemented modular lattice)      243.F
Element(s) boundary (in a simply connected domain)      333.B
Element(s) canonical (in the representation of a functor)      52.L
Element(s) Casimir (of a Lie algebra)      248.J
Element(s) central (in a lattice)      243.E
Element(s) compact (of a topological Abelian group)      422.F
Element(s) conformal arc      110.D
Element(s) conjugate (in a field)      149J
Element(s) conjugate (in a group)      190.C
Element(s) contact      428.E
Element(s) contact (in a space with a Lie transformation group)      110.A
Element(s) cyclic      251.J
Element(s) even (of a Clifford algebra)      61.B
Element(s) finite, method      304.C
Element(s) function      198.I 339.
Element(s) function, in the wider sense      198.O
Element(s) generalized nilpotent (in a commutative Banach algebra)      36. E
Element(s) generating      390.G
Element(s) greatest (in an ordered set)      311.B
Element(s) homogeneous (of a graded ring)      369.B
Element(s) homogeneous (of a homogeneous ring)      369.B
Element(s) hypersurface      324.B
Element(s) idempotent (of a ring)      368.B 450.O
Element(s) identity (of a field)      149.A
Element(s) identity (of a group)      190.A
Element(s) identity (of a ring)      368.A
Element(s) identity (of an algebraic system)      409.C
Element(s) inseparable (of a field)      149.H
Element(s) integral (of a system of total differential equations)      428.E
Element(s) inverse (in a group)      190.A
Element(s) inverse (in a ring)      368.B
Element(s) inverse function      198.L
Element(s) invertible (of a ring)      368.B
Element(s) irreducible (of a ring)      67.H
Element(s) isotropic (with respect to a quadratic form)      348.E
Element(s) k-dimensional integral      191.I
Element(s) Kepler orbital      309.B
Element(s) least (in an ordered set)      311 .B
Element(s) left inverse (of an element of a ring)      368.B
Element(s) line      111.C
Element(s) linearly dependent      2.E
Element(s) linearly independent      2.E
Element(s) matrix      351.B
Element(s) maximal (in an ordered set)      311.B
Element(s) maximum (in an ordered set)      311.B
Element(s) minimal (in an ordered set)      311.B
Element(s) minimum (in an ordered set)      311.B
Element(s) negative (of an ordered field)      149.N
Element(s) neutral (in a lattice)      243.F
Element(s) nilpotent (of a ring)      368.B
Element(s) odd (of a Clifford algebra)      61.B
Element(s) ordinary      191.I
Element(s) ordinary integral      428.E
Element(s) oriented (in a covering manifold of a homogeneous space)      110.A
Element(s) orthogonal (of a ring)      368.B
Element(s) osculating      309.D
Element(s) polar (of an analytic function in the wider sense)      198.O
Element(s) polar (of an integral element)      428.E
Element(s) positive (of an ordered field)      149.N
Element(s) prime (for a valuation)      439.E
Element(s) prime (of a ring)      67.H
Element(s) primitive (of an extension of a field)      149.D
Element(s) projective line      110.B
Element(s) purely inseparable (of a field)      149.H
Element(s) quasi-inverse (in a ring)      368.B
Element(s) quasi-invertible (of a ring)      368.B
Element(s) quasiregular (of a ring)      368.B
Element(s) ramified      198.O
Element(s) rational      198.O
Element(s) regular (of a connected Lie group)      249.P
Element(s) regular (of a ring)      368.B
Element(s) regular integral      428.E
Element(s) right inverse (in a ring)      368.B
Element(s) separable (of a field)      149.H
Element(s) singular (of a connected Lie group)      249.P
Element(s) singular (with respect to a quadratic form)      348.E
Element(s) surface      324.B
Element(s) surface, union of      324.B
Element(s) torsion (of an A-module)      277.D
Element(s) transcendental (of a field)      149.E
Element(s) transgressive (in the spectral sequence of a fiber space)      148.E
Element(s) triangular      304.C
Element(s) unit (of a field)      149.A
Element(s) unit (of a group)      190.A
Element(s) unit (of a ring)      368.A
Element(s) unity (of a field)      149.A
Element(s) unity (of a ring)      368.A
Element(s) volume (of an oriented C-manifold)      105.W
Element(s) volume, associated with a Riemannian metric      105.W
Element(s) zero (of a field)      149.A
Element(s) zero (of a linear space)      256.A
Element(s) zero (of a ring)      368.A
Element(s) zero (of an additive group)      2.E 190.A
Element(s)algebraic (of a field)      149.E
Elementarily equivalent structures      276.D
Elementary (Kleinian group)      234.A
Elementary (path)      186.F
Elementary Abelian functions      3.M
Elementary Abelian group      2.B
Elementary catastrophe      51.E
Elementary collapsing      65.C
Elementary contract      102.C
Elementary divisor (of a matrix)      269.E
Elementary divisor simple (of a matrix)      269.E
Elementary event(s)      342.B
Elementary event(s), space of      342. B
Elementary extension      276.D
Elementary function(s)      131
Elementary function(s) of class n      131. A
Elementary Hopf algebra      203.D
Elementary ideal      235.C
Elementary kernel (of a linear partial differential operator)      320.H
Elementary number theory      297
Elementary number theory fundamental theorem of      297.C
Elementary particle(s)      132
Elementary solution      App. A Table
Elementary solution (of a differential operator)      112.B
Elementary solution (of a linear partial differential operator)      320.H
Elementary solution (of partial differential equations of elliptic type)      323.B
Elementary symmetric function      337.I
Elementary symmetric polynomial      337.I
Elementary topological Abelian group      422.E
Elias, Peter(1923-)      213.F
Eliasson, Halldor Ingimar(1939-)      364.H
Eliminate (variables from a family of polynomials)      369.E
Elimination design for two-way, of heterogeneity      102.K
Elimination forward      302.B
Elimination Gauss — Jordan      302.B
Elimination Gaussian      302.B
Elimination method, Sylvester      369.E
Elliott, George Arthur(1945-)      36.H 36.K 36.r
Elliott, Peter D.T.A.      295.r
ellipse      78.A
Ellipsoid      350.B
Ellipsoid of inertia      271.E
Ellipsoid of revolution      350.B
Ellipsoidal coordinates      90.C 133.A App. Table
Ellipsoidal harmonics      133.B
Ellipsoidal harmonics, four species of      133.C
Ellipsoidal type, special function of      389.A
Elliptic (differential operator)      112.A 323.A 237.H
Elliptic (pseudodifferential operator)      323.K
Elliptic (Riemann surface)      77.B 367.D
Elliptic (solution)      323.D
Elliptic analytic hypo-      112.D
Elliptic analytically hypo-      323.I
Elliptic coordinates      90.C 350.E App. Table
Elliptic curve      9.C
Elliptic curve, L-functions of      450.S
Elliptic cylinder      350.B
Elliptic cylinder function      268.B
Elliptic cylindrical coordinates      App. A Table
Elliptic cylindrical surface      350.B
Elliptic domain      77.B
Elliptic function field      9.D
Elliptic function(s)      134
Elliptic function(s) Jacobi      App. A Table
Elliptic function(s) of the first kind      134.G
Elliptic function(s) of the second kind      134.G
Elliptic function(s) of the third kind      134.H
Elliptic function(s) Weierstrass      App. A Table
Elliptic geometry      285.A
Elliptic hypo-      112.D 189.C 323.I
Elliptic integral      11.C 134.A App. Table
Elliptic integral complete      App. A Table
Elliptic integral of the first kind      134.A App. Table
Elliptic integral of the first kind, complete      134.B
Elliptic integral of the first kind, incomplete      134.B
Elliptic integral of the second kind      134.A App. Table
Elliptic integral of the second kind, complete      134.C
Elliptic integral of the third kind      134.A App. Table
Elliptic integrals and elliptic functions      App. A Table
Elliptic irrational function      134.A
Elliptic microlocally      345.A
Elliptic modular group      122.D
Elliptic motions      55.A
Elliptic omplex (on a compact $C^\infty$-manifold)      237.H
Elliptic operator      323.H
Elliptic operator microlocally      345.A
Elliptic operator strongly      323.H
Elliptic paraboloid      350.B
Elliptic paraboloid of revolution      350.B
Elliptic point (of a Fuchsian group)      122.C
Elliptic point (on a surface)      111.H
Elliptic quadric hypersurface      350.G
Elliptic singularity      418.C
Elliptic singularity minimally      418.C
Elliptic space      285.C
Elliptic strongly      112.G 323.H
Elliptic surface      72.K
Elliptic theta function      134.I App. Table
Elliptic transformation      74.F
Elliptic type      323.A.D
Elliptic type (Lie algebra)      191.D
Elliptic type, partial differential equation of      323 App. Table
Ellis, George F.R.(1939-)      359.r
Elongation strain      271.G
Elworth, Kenneth David(1940-)      183 286.D 406.r
El’sgol’ts, Lev Ernestovich(1909-1967)      163.r
Embedded (into a topological space)      425.J
Embedded hyperbolically      21.O
Embedded Markov chain      260.H
Embedded primary component (of an ideal)      67.F
Embedded prime divisor (of an ideal)      67.F
Embedding      105.K
Embedding (of a $C^\infty$-manifold)      105.K
Embedding (of a topological space)      425.J
Embedding (of categories)      52.H
Embedding formula of, form      303.D
Embedding generalized Borel      384.D
Embedding PL      65.D
Embedding principle (in dynamic programming)      127.B
Embedding regular      105.K
Embedding Tanaka      384.D
Embedding theorem full (of an Abelian category)      52.N
Embedding theorem Irwin      65.D
Embedding theorem Menger — Noebeling      117.D
Embedding theorem Sobolev — Besov      168.B
Embedding theorem Tikhonov      425.T
Embedding toroidal      16.Z
Embedding torus      16.Z
Emch, Gerald Gustav(1936-)      351.r
Emde, Fritz      389.r NTR
Emden differential equation      291.F
Emden function, Lane-      291.F
Emden, Robert(1862-1940)      291.F
emission      325.A
Emission backward      325.A
Emission forward      325.A
Empirical characteristic function      396.C
Empirical constant      19.F
Empirical distribution function      250.F 374.E 396.C
Empirical formula      19.F
Empiricism, French      156.C
Empty set      33.B 381.A
Empty set axiom of      33.B
Enantiomorphic pair      92.A
Enantiomorphous      92.A
Encoder      213.D
Encoding      63.A
End (of a noncompact manifold)      178 F
End (of a segment in an affine space)      7.D
End (of a segment)      155.B
End (of an arc)      93.B
End Heins      367.E
End lower (of a curvilinear integral)      94.D
End upper (of a curvilinear integral)      94.D
End vertex      186.B
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте