Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Frame(s) moving      90.B 111.C 417.B
Frame(s) natural moving      417.B
Frame(s) normal      110.B
Frame(s) of order 0      110.C
Frame(s) of order 1      110.B 110.C
Frame(s) of order 2      110.B 110.C
Frame(s) of order 3      110.B 110.C
Frame(s) of order 4      110.B
Frame(s) orthogonal (in a Euclidean space)      111.B 139.E
Frame(s) orthogonal k- (in $\mathbf{R}^n$)      199.B
Frame(s) orthogonal moving      417.D
Frame(s) projective      343.C
Frame(s) Stiefel manifold of k-      199.B
Frame(s) stochastic moving      406.G
Frame(s) tangent r-      105.H
Frame, J.S.      App.B Table
Framed link      114.L
Framing      114.L
Francis, J.G.F.      298.F
Frank, Philipp(1884-1966)      129.r
Frankel, Theodore T.(1929-)      364.D
Franklin, Philip(1898-1965)      157.A 157.E
Franklin, Stanley P.(1931-)      425.CC
Franks, John M.(1943-)      126.J 126.K
Franz, Wolfgang(1905-)      91.r 337.F
Fraser, Donald Alexander Stuart(1925-)      396.r 401.r
Frautschi, Steven Clark(1933-)      386.r
Frechet axiom      425.Q
Frechet curve      246.A
Frechet derivative      286.E
Frechet differentiable function      286.E
Frechet differential      286.E
Frechet distance (between surfaces)      246.I
Frechet L-space      87.K
Frechet manifold      286.K
Frechet space (quasinormed space)      37.O
Frechet space (topological linear space)      424.I
Frechet space (topological space)      425.CC
Frechet space in the sense of Banach      37.O
Frechet space in the sense of Bourbaki      424.I
Frechet space locally convex      424.I
Frechet surface      246.I
Frechet — Uryson space      425.CC
Frechet, Rene Maurice(1878-1973)      37.O 87.K 87.r 117.H 246.A 246.I 273.A 273.r 286.E 286.K 424.I 425.Q 425.S 425.CC 425.r 426
Fredholm alternative theorem      68.E 217.F
Fredholm determinant      217.E
Fredholm first minor      217.E
Fredholm formula      68.L
Fredholm integral equation      217.A
Fredholm integral equation of the first kind      217. A
Fredholm integral equation of the second kind      217.A
Fredholm integral equation of the third kind      217.A
Fredholm mapping      286.E
Fredholm operator      68.F 251.D
Fredholm operator (in the sense of Grothendieck)      68.K
Fredholm rth minor      217.E
Fredholm type, integral equation of      217.A
Fredholm type, integrodifferential equation of      222.A
Fredholm, Erik Ivar(1866-1927)      20 68.A 68.E 68.F 68.K 68.L 120.A 162 217.A 217.E 217.F 217.r 222.A 251.D 286.E 339.D
Free $(F, F')$-(oriented G-manifold)      431.E
Free (discontinuous group)      122.A
Free Abelian group      2.C
Free additive group      2.E
Free derivative      235.C
Free Dirac field      377.C
Free distribution-      371. A
Free energy      340.B 402.G
Free energy Gibbs      419.C
Free energy Helmholtz      419.C
Free energy mean      340.B 402.G
Free F- (oriented G-manifold)      431.E
Free fields      150.A
Free grammar, context-      31.D
Free groups      161
Free Hamiltonian      351.D
Free homotopy      202.B
Free Lagrangian density      150.B
Free module      277.G
Free product (of groups)      190.M
Free scalar field      377.C
Free semigroup      161. A
Free special Jordan algebra      231.A
Free vacuum vector      150.C
Free variable      411.C
Free vector      442.A
Freedman, David A.(1938-)      250.r
Freedman, Michael Hartley(1951-)      114.K 114.r
Freedom asymptotic      361.B
Freedom degrees of (of a dynamical system)      271.F
Freedom n degrees of (sampling distribution)      374.B 374.C
Freely act      122.A 431.A
Frege, Friedrich Ludwig Gottlob(1848-1925)      156.B 411.A 411.r
Freitag, Eberhard(1942-)      32.F
French empiricism      156.C
Frenet formula      111.D
Frenet frame      110.A 111.D
Frenet — Serret formulas (on curves)      111.D App. Table
Frenet, Jean-Frederic(1816-1900)      110.A 111.D App.A Table
Frequency (of a translational flow)      126.L 136.G
Frequency (of a wave)      446
Frequency (of an oscillation)      318.A
Frequency (of samples)      396.C 397.B
Frequency angular (of a wave)      446
Frequency circular (of a simple harmonic motion)      318.B
Frequency distribution      397.B
Frequency function      397.D
Frequency relative (of samples)      396.C
Frequency response function      421.E
Fresnel integral      167.D App. Tables 19.II
Fresnel, Augustin Jean(1788-1827)      167.D App.A Tables 19.II
Freudenthal theorem      202.U
Freudenthal, Hans(1905-)      162 178.F 202.A 202.U 202.r 248.r 249.r 265 310.A 310.D
Freyd, Peter John(1936-)      52.r 200.r
Fricke, Robert(1861-1930)      32.r 73.r 122.r 233.r 234.r
Friedberg, Richard Michael(1935-)      356.D
Friedman, Avner(1932-)      108.A 108.B 115.D 286.r 320.r 322.r 327.r 406.r 440.r
Friedman, James W.      173.E
Friedman, Lawrence      307.r
Friedman, Nathaniel A.(1938-)      136.E 136.r
Friedrichs extension      112.I 251.I
Friedrichs scheme      304.F
Friedrichs theorem      323.H 326.D
Friedrichs, Kurt Otto(1901-83)      112.D 112.I 112.S 125.A 162 204.G 205.r 252.r 300.r 304.F 323.H 323.r 325.G 325.r 326.D 331.A 345.A 351.K 375.A
Frieze group      92.F
Fristedt, Bert(1937-)      5.r
Frobenius algebra      29.H
Frobenius algebra quasi-      29.H
Frobenius automorphism (of a prime ideal)      14.K
Frobenius group      151.H
Frobenius integrability condition      154.B
Frobenius method      App. A Table
Frobenius morphism      450.P
Frobenius substitution (of a prime ideal)      14.K
Frobenius theorem (on Abelian varieties)      3.D
Frobenius theorem (on matrices with nonnegative entries)      269.N
Frobenius theorem (on polynomials of a matrix)      390.B
Frobenius theorem (on representations of finite groups)      362.G
Frobenius theorem (on total differential equations and on foliations)      154.B 286.H 428.D
Frobenius theorem, Perron —      310.H
Frobenius, Ferdinand Georg(1849-1917)      1.r 2.B 3.A 3.D 3.N 14.K 29.H 107.A 145 151.H 154.B 190.Q 190.r 191.B 257.D 267 269.I 269.N 280.F 286.H 297.I 310.H 362.E 362.G 390.B 428.A 428.D 437.EE 450.P App.A Table
Froehlich, Albrecht(1916-)      14.r 59.r
Froehlich, Jiirg M.(1946-)      402.G
Froissart bound      386.B
Froissart — Martin bound      386.B
Froissart, Marcel(1934-)      146.A 386.B
Frolik, Zdenek(1933-)      425.Y 425.CC 436.r
Fronsdal, Christian(1931-)      132.r
Front set, analytic wave      274.D
Front set, wave      274.B 345.A
Frontier point (of a subset)      425.N
Frostman maximum principle      338.C
Frostman, Otto Albin(1907-1977)      48.A 48.G 120.D 338.C 338.r
Froude number      116.B
Froude, William(1810-1879)      116.B
Fu, James Chuan(1937-)      399.M
Fubini theorem      221.E
Fubini, Guido(1879-1943)      109 110.B 110.r 221.E 270.L
Fubini, Sergio Piero(1928-)      132.r
Fuchs, Immanuel Lazarus(1833-1902)      32.B 107.A 119.r 122.C 178.F 234.B 288.B App.A Table
Fuchs, Ladislas      2.r
Fuchs, Maximilian Ernst Richard(1873-)      253.A 253.E 288.D
Fuchs, Wolfgang Heinrich(1915-)      17.D 272.K 272.r
Fuchsian form of weight k (or of dimension - k)      32.B
Fuchsian function      32.B
Fuchsian group      122.C
Fuchsian group of the first kind      122.C
Fuchsian group of the second kind      122.C
Fuchsian relation      253.A App. Table
Fuchsian type (visibility manifold)      178.F
Fuchsian type, equation of      253.A
Fuchsoid group      122.C
Fucter, Karl Rudolf(1880-1950)      73.r
Fuerstenberg, Hillel      136.C 136.H
Fuglede, Bent(1925-)      48.H 143.B 338.E
Fujii, Hiroshi(1940-)      304.D
Fujiki, Akira(1947-)      23.G 72.H 232.C
Fujikoshi, Yasunori(1942-)      280.r
Fujimagari, Tetsuo(1943-)      44.E
Fujimoto, Hirotaka(1937-)      21.M 21.N
Fujisaki, Genjiro(1930-)      6.F 450.L
Fujisaki, Masatoshi(1943-)      86.E 405.r
Fujisawa, Rikitaro(1861-1933)      267
Fujishige Satoru(1947-)      66.r 281.r
Fujita, Hiroshi(1928-)      204.B—D 304.r 378.J
Fujita, Takao(1949-)      9.r 15.H 72.I
FujiTe, Tatuo(1930-)      143.r
Fujiwara, Daisuke(1939-)      323.H 345.B
Fujiwara, Masahiko(1943-)      118.C 118.D
Fujiwara, Matsusaburo(1881-1946)      89.E 230.* 280.r 240.B App.A Table
Fukamiya, Masanori(1912-)      162
Fuks cohomology, Gel’fand—      105.AA
Fuks, Boris Abramovich(1907-1975)      21.r 198.r
Fuks, Dmitrii Borisovich      105.AA 105.r 154.G
Fukushima Masatoshi(1935-)      115.C 261.r
Fulkerson, Delbert Ray(1924-76)      376.r
Full discrete approximation      304.B
Full embedding theorem (of an Abelian category)      52.N
Full group      136.F 258.A
Full homogeneous Lorentz group      258.A
Full inhomogeneous Lorentz group      258.A
Full international notation      92.E
Full linear group      60.B
Full matrix algebra      269.B
Full Poincare group      258.A
Full subcategory      52.A
Fuller, Francis Brock      126.G 126.N
Fully complete (locally convex space)      424.Y
Fully faithful functor      52.H
Fully normal space      425.X
Fully transitive      92.C
Fulton and Hansen, general connectedness theorem of      16.I
Fulton, William(1939-)      9.r 16.I 366.E 366.r 418.r
Function algebra      164.A
Function element      198.I 339.A
Function element in the wider sense      198.O
Function element inverse      198.L
Function field (of an algebraic curve over a field)      9.C
Function field (of an algebraic variety)      16.A
Function field Abelian      3.J
Function field algebraic, in n variables      149.K
Function field algebraic, over k of dimension 1      9.D
Function field algebraic, over k of transcendence degree 1      9.D
Function field elliptic      9.D
Function field rational, in n variables      149.K
Function group      234.A
Function matrix rational      86.D
Function matrix transfer      86.B
Function space(s)      168 435.D
Function space(s) test      125.S
Function symbol      411.H
Function variable      411.H
Function(s)      165 381.C
Function(s) $C^r$-, in a $C^\infty$-manifold      105.G
Function(s) $C^\infty$- (of many variables)      58.B
Function(s) $C^\infty$- , slowly increasing      125.O
Function(s) $\alpha$-excessive      261.D
Function(s) $\eta$-      391.L
Function(s) $\lambda$-      32.C
Function(s) $\mathfrak{B}$-measurable      270.J
Function(s) $\mathscr{E}$-      46.C
Function(s) $\mu$-conformal      352.B
Function(s) $\sigma$-, of Weierstrass      134.F App. Table
Function(s) $\tau$-      150.D
Function(s) $\wp$-, of Weierstrass      134.F App. Table
Function(s) Abelian      3.J
Function(s) absolutely integrable      214.E
Function(s) additive interval      380.B
Function(s) additive set      380.C
Function(s) admissible      46.A 304.B
Function(s) Ahlfors      43.G 77.E
Function(s) algebraic      11.A
Function(s) almost periodic      18
Function(s) almost periodic, in the sense of Bohr      18.B
Function(s) almost periodic, on a group      18.C
Function(s) almost periodic, with respect to p      18.C
Function(s) alternating      337.I
Function(s) amplitude (of a Fourier integral operator)      274.C 345.B
Function(s) analytic almost periodic      18.D
Function(s) analytic operator      37.K
Function(s) Anger      39.G App. Table
Function(s) Appell hypergeometric, of two variables      206.D App. Table
Function(s) argument      46.A
Function(s) arithmetic      295.A
Function(s) Artin — Hasse      257.H
Function(s) associated Legendre      383.C App. Table
Function(s) asymptotically developable      30.A
Function(s) automorphic      32
Function(s) automorphic, with respect to $\Gamma$      32.A
Function(s) b-      125.EE 418.H
Function(s) Baire      84.D
Function(s) Barnes extended hypergeometric      206.C App. Table
Function(s) base      304.B
Function(s) Bellman      127.G
Function(s) Bergman kernel      188.G
Function(s) Bessel      39 App. Table
Function(s) beta      174.C App. Table
Function(s) bispectral density      421.C
Function(s) Borel measurable      270.J
Function(s) boundary      160.E
Function(s) bounded      43.A
Function(s) Busemann      178.F
Function(s) canonical (on a nonsingular curve)      9.E
Function(s) characteristic (for an optical system)      180.C
Function(s) characteristic (of a density function)      397.G
Function(s) characteristic (of a graded A-module)      369.F
Function(s) characteristic (of a meromorphic function)      272.B
Function(s) characteristic (of a probability measure)      341.C
Function(s) characteristic (of a subset)      381.C
Function(s) characteristic (of an n-person cooperative game)      173.D
Function(s) characteristic operator      251.N
Function(s) Chebyshev      App. A Table
Function(s) Chebyshev q-      19.G App. Table
Function(s) choice      33.B 34.A
Function(s) circular      131.F 432.A
Function(s) class (on a compact group)      69.B
Function(s) cn      App. A Table
Function(s) completely additive set      380.C
Function(s) completely monotonic      240.E 240.K
Function(s) completely multiplicative number-theoretic      295.B
Function(s) complex      165.B
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2022
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте