Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Euler linear ordinary differential equation      App. A Table
Euler method of describing the motion of a fluid      205.A
Euler method of numerical solution of ordinary differential equations      303.E
Euler method of summation      379.P
Euler method summable by      379.P
Euler number      177.C 201.B App. Table
Euler path      186.F
Euler polynomial      177.C
Euler product      450.B
Euler relation      419.B
Euler square      241.B
Euler summation formula      295.E
Euler theorem on polyhedra      201.F
Euler transformation (of infinite series)      379.I
Euler — Lagrange differential equation      46.B
Euler — Maclaurin formula      379.J
Euler — Poincare characteristic      16.E 201.B
Euler — Poincare class      56.B
Euler — Poincare class (of a manifold)      56.F
Euler — Poincare class universal      56.B
Euler — Poincare formula      201.B 201.F
Euler, L.      141
Euler, Leonhard(1707-83)      4.C 16.E 20 38 46.A 46.B 56.B 56.F 65.A 83.A 90.C 93.C 107.A 107.B 126.A 131.D 131.G 141 145 165.A 165.r 174.A 174.C 177.C 177.D 181 186.A 186.F 201.B 201.F 201.N 204.E 205.A 205.B 240.A 241.B 266 271.E 271.F 275.A 294.A 295.C 295.E 296.A 297.D 297.H 303.D 303.E 320.D 332 379.I—K 419.B 420.B 432.C 441.B 450.B App.A Tables 14.I App.B Tables 6.IV
Evaluable (locally convex space)      424.I
Evaluation and review technique program      376
Evans theorem      48.E
Evans — Selberg theorem      48.E 338.H
Evans, Griffith Conrad(1887-1973)      48.E 120.D 338.H
Even element (of a Clifford algebra)      61.B
Even function      165.B
Even half-spin representation      61.E
Even half-spinor      61.E
Even permutation      151 G
Even state      415.H
Even-oddness conservation laws      150.D
Evens, Leonard(1933-)      200.M
Event commutativity      346.G
Event horizon      359.D
Event(s)      281.D 342.B
Event(s) complementary      342.B
Event(s) delayed recurrent      260.C
Event(s) elementary      342.B
Event(s) exclusive      342.B
Event(s) impossible      342.B
Event(s) independent      342.B
Event(s) inferior limit      342.B
Event(s) measurable      342.B
Event(s) probability of an      342.B
Event(s) product      342.B
Event(s) random      342.B
Event(s) recurrent      250.D 260.C
Event(s) space of elementary      342.B
Event(s) sum      342.B
Event(s) superior limit      342.B
Event(s) sure      342.B
Event(s) symmetric      342.G
Event(s) tail      342.B
Event(s) with probability 1      342.B
Event(s), intersection of      342.B
Everett formula (for functions of two variables)      App. A Table
Everett interpolation formula      App. A Table
Everett, J.D.      223.C App.A Table
Everywhere almost      270.D 342.D
Everywhere nearly      338.F
Everywhere quasi-      338.F
Evolute (of a curve)      111.E
Evolution equation      378
Evolution operator      378.G
Evolution operator holomorphic      378.I
Ewens, Warren J.      263.r
Exact (additive covariant functor)      200.I
Exact (differential on a Riemann surface)      367.H
Exact (endomorphism)      136.E
Exact (in Galois cohomology)      172.J
Exact (in sheaf theory)      383.C
Exact differential equation      App. A Table
Exact differential form      105.Q
Exact functor      52.N
Exact half-      200.I
Exact left-      200.I
Exact right-      200.I
Exact sampling theory      401.F
Exact sequence (of A-homomorphisms of A-modules)      277.E
Exact sequence (R,S)- (of modules)      200.K
Exact sequence cohomology      201.L
Exact sequence fundamental (on cohomology groups)      200.M
Exact sequence Gysin (of a fiber space)      148.E
Exact sequence homology (for simplicial complexes)      201.L
Exact sequence homology (of a fiber space)      148.E
Exact sequence homotopy      202. L
Exact sequence homotopy (of a fiber space)      148.D
Exact sequence homotopy (of a triad)      202.M
Exact sequence homotopy (of a triple)      202.L
Exact sequence Mayer — Vietoris (for a proper triple)      201.C
Exact sequence of cohomology      200.F
Exact sequence of Ext      200.G
Exact sequence of homology      200.C
Exact sequence of Tor      200.D
Exact sequence Puppe      202.G
Exact sequence reduced homology      201.F
Exact sequence relative Mayer — Vietoris      201.L
Exact sequence short      200.I
Exact sequence Wang (of a fiber space)      148.E
Exceptional (Jordan algebra)      231.A
Exceptional (leaf)      154.D
Exceptional compact real simple Lie algebra      248.T
Exceptional compact simple Lie group      249.L
Exceptional complex simple Lie algebra      248.S
Exceptional complex simple Lie group      249.M
Exceptional curve      15.G
Exceptional curve of the first kind      15.G
Exceptional curve of the second kind      15.G
Exceptional function, Julia      272.F
Exceptional orbit      431.C
Exceptional sets      192.R
Exceptional value (of a transcendental entire function)      429.B
Exceptional value Borel      272.E
Exceptional value Nevanlinna      272.E
Exceptional value Picard      272.E
Excess      178.H App. Table
Excess spherical      432.B
Excess total      178.H
Excess, coefficient of      341.H 396.C
Excessive $\alpha$-      261.D
Excessive (function)      260.D 261.D
Excessive measure      261.F
Exchange      420.D
Exchange of stability      286.T
Excision isomorphism      201.F 201.L
Excluded middle, law of      156.C 411.L
Exclusive events      342.B
Exhaustion      178.F
Existence theorem (for ordinary differential equations)      316.C
Existence theorem (in class field theory)      59.C
Existence theorem Cartan — Kaehler      191.I
Existence theorem Cauchy      320.B
Existence theorem Cauchy — Kovalevskaya      321.A
Existential proposition      411.B
Existential quantifier      411.C
exit      281.C
Exit boundary (of a diffusion process)      115.B
Exit boundary point      260.I
Exit time      261.B
Exogenous variable      128.C
Exotic sphere      114.B
Exp A (exponential function of matrix A)      269.H
Exp x      131.D
expansion      65.C
Expansion $\varepsilon$-      361.C
Expansion asymptotic      30.A App. Table
Expansion asymptotic (of a pseudodifferential operator)      345.A
Expansion coefficient      317.A
Expansion Cornish — Fisher      374.F
Expansion Edgeworth      374.F
Expansion formula, q-      134.I
Expansion Laurent      198.D
Expansion method      205.B
Expansion method of matched asymptotic      112.B
Expansion Minakshisundaram-Pleijel asymptotic      391.B
Expansion orthogonal      317.A
Expansion partial wave      375.E 386.B
Expansion Taylor (of a holomorphic function)      339.A
Expansion Taylor (of an analytic function of several variables)      21.B
Expansion Taylor, and remainder      App. A Table
Expansion Taylor, formal      58.C
Expansion theorem      306.B
Expansion theorem Hilbert — Schmidt      217.H
Expansion theorem Laplace (on determinants)      103.D
Expansive      126.J
Expectation      115.B 342.C
Expectation conditional      342.E
Expectation mathematical      341.B
Expectation value (of an operator)      351.B
Expected amount of inspection      404.C
Expected value (of a random variable)      342.C
Experiment(s) $S^k$ factorial      102.H
Experiment(s) factorial      102.H
Experiment(s) statistical      398.G
Experiment(s), design of      102
Experimental analysis      385.A
Experimentation model      385.A
Explanatory variable      403.D
Explicit (difference equation in a multistep method)      303.E
Explicit (Runge — Kutta method)      303.D
Explicit function      165.C
Explicit method      303.E
Explicit reciprocity laws      14.R
Explicit scheme      304.F
Exploratory procedures      397.Q
Exploring a response surface, designs for      102.M
Explosion time      406.D
Explosion, $\Omega$-      126.J
Exponent (of a finite group)      362.G
Exponent (of a Kummer extension)      172.F
Exponent (of a power)      131.B
Exponent (of a regular singular point)      254.C
Exponent (of a stable distribution)      341.G
Exponent (of an Abelian extension)      172.F
Exponent (of an algebra class)      29.E
Exponent characteristic (of a variational equation)      394.C
Exponent characteristic (of an autonomous linear system)      163.F
Exponent characteristic (of the Hill differential equation)      268.B
Exponent conjugate      168.C
Exponent critical      111.C
Exponent integral      167.D
Exponent of convergence      429.B
Exponent of the stable process      5.F
Exponent, one-sided stable process of      5.F
Exponent, subordinator of      5.F
Exponential curve      93.H
Exponential dichotomy      290.B
Exponential distribution      341.D App. Table
Exponential distribution two-sided      App. A Table
Exponential family of distributions      396.G
Exponential formula      286.X
Exponential formula double      299.B
Exponential function      131.D
Exponential function of an operator      306.C
Exponential function with the base a      131. B
Exponential generating function      177.A
Exponential group      437.U
Exponential Hilbert space      377.D
Exponential integral      167.D App. Table
Exponential lattice      287.A
Exponential law (on cardinal numbers)      49.C
Exponential mapping (of a Lie algebra into a Lie group)      249.Q
Exponential mapping (of a Riemannian manifold)      178.A 364.C
Exponential method, Borel      379.O
Exponential series      131.D
Exponential valuation      439.B
Exponential valuation p-adic      439.F
Exponentially decreasing Fourier hyperfunction      125.BB
Exponentially decreasing real analytic function      125.BB
Exponentially stable      163.G 394.B
Exposed, strongly      443.H
Expression field of rational      337.H
Expression rational      337.H
Ext      200.G
Ext groups      200.G
Ext, exact sequence of      200.G
Extended Dynkin diagram      App. A Table
Extended hypergeometric function, Barnes      206.C
Extended real number      87.E
Extension $Z_l$-      14.L
Extension $\Gamma$-      14.L
Extension (of a connection)      80.F
Extension (of a field)      149.B
Extension (of a fractional ideal)      14.I
Extension (of a group)      190.N
Extension (of a mapping)      381.C
Extension (of a solution of an ordinary differential equation)      316.C
Extension (of a valuation)      439.B
Extension (of an ideal of compact operators)      36.J 390.J
Extension (of an isomorphism of subfields)      149.D
Extension (of an operator)      251.B
Extension (of modules)      200.K
Extension Abelian (of a field)      172.B
Extension algebra      200.L
Extension algebraic (of a field)      149.E
Extension Artin — Schreier (of a field)      172.F
Extension basic $Z_l$-      14.L
Extension central (of a group)      190.N
Extension cone      65.D
Extension cyclic (of a field)      172.B
Extension cyclotomic $Z_$-      14.L
Extension elementary      276.D
Extension field      149.B
Extension field Hahn — Banach      37.F
Extension field Hopf (in measure)      270.E
Extension field Kolmogorov      341.I
Extension field Picard — Vessiot      113
Extension field second (in the theory of obstructions)      305.C
Extension field strongly normal      113
Extension field third (in the theory of obstructions)      305.C
Extension field Tietze      425.Q
Extension field Whitney      168.B
Extension finite      149.F
Extension Friedrichs      112.I 251.E
Extension Galois      172.B
Extension group      200.M
Extension inseparable (of a field)      149.H
Extension Kummer (of a field)      172.F
Extension Lebesgue      270.D
Extension linear (of a rational mapping to an Abelian variety)      9.E
Extension maximal Abelian      257.F
Extension maximal separable (of a field)      149.H
Extension natural (of an endomorphism)      136.E
Extension normal      149.G251.K
Extension of the coefficient ring      29.A
Extension p-(of a field)      59.F
Extension p-adic      439.F
Extension purely inseparable (of a field)      149.H
Extension Pythagorean (of a field)      155.C
Extension regular (of a field)      149.K
Extension scalar (of a linear representation)      362.F
Extension scalar (of an A-module)      277.L
Extension scalar (of an algebra)      29.A
Extension separable (of a field)      149.H 149.K
Extension separably generated (of a field)      149.K
Extension simple (of a field)      149.D
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте