Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Group(s) defect (of a conjugate class in a group)      362.I
Group(s) derived (of a group)      190.H
Group(s) difference (of an additive group)      190.C
Group(s) differentiable transformation      431.C
Group(s) dihedral      151.G
Group(s) direct product      190.L
Group(s) discontinuous transformation      122.A
Group(s) discontinuous, of the first kind      122.B
Group(s) divisor (of a compact complex manifold)      72.F
Group(s) divisor class (of a Riemann surface)      11.D
Group(s) elementary topological Abelian      422.E
Group(s) elliptic modular      122.D
Group(s) equicontinuous, of class ($C^0$)      378.C
Group(s) equivariant J-      431.C
Group(s) exponential      437.U
Group(s) extension (cohomology of groups)      200.M
Group(s) factor      190.C
Group(s) finite      151.A 190.C
Group(s) finitely generated      190.C
Group(s) finitely presented      161.A
Group(s) formal      13.C
Group(s) four-      151.G
Group(s) free      161.A
Group(s) free product (of the system of groups)      190.M
Group(s) frieze      92.F
Group(s) Frobenius      151.H
Group(s) Fuchsian      122.C
Group(s) Fuchsoid      122.C
Group(s) full      136.F
Group(s) full linear      60.B
Group(s) full Poincare      258.A
Group(s) function      234.A
Group(s) fundamental (of a topological space)      170
Group(s) Galois (of a Galois extension)      172.B
Group(s) Galois (of a polynomial)      172.G
Group(s) Galois (of an algebraic equation)      172.G
Group(s) general linear      60.B 226.B
Group(s) general linear (over a noncommutative field)      60.O
Group(s) generalized nilpotent      190.K
Group(s) generalized quaternion      151.B
Group(s) generalized solvable      190.K
Group(s) Grothendieck (of a compact Hausdorff space)      237.B
Group(s) Grothendieck (of a ring)      237.J
Group(s) h-cobordism (of homotopy n-spheres)      114.I App. Table
Group(s) Hamilton      151.B
Group(s) Hausdorff topological      423.B
Group(s) Hilbert modular      32.G
Group(s) holonomy      80.D 364.E
Group(s) homogeneous holonomy      364.E
Group(s) homogeneous Lorentz      359
Group(s) homology (of a chain complex)      201.B
Group(s) homology (of a group)      200.M
Group(s) homology (of a Lie algebra)      200.O
Group(s) homology (of a polyhedron)      201.D
Group(s) homotopy      202.J
Group(s) hyper-      190.P
Group(s) icosahedral      151.G
Group(s) ideal class      14.E 67.K
Group(s) ideal, modulo m*      14.H
Group(s) idele      6.C
Group(s) idele class      6.D
Group(s) indecomposable      190.L
Group(s) inductive limit      210.C
Group(s) inertia (of a finite Galois extension)      257.D
Group(s) inertia (of a prime ideal)      14.K
Group(s) infinite      190.C
Group(s) infinite classical      147.I 202.V
Group(s) infinite orthogonal      202.V
Group(s) infinite symplectic      202.V
Group(s) infinite unitary      202.V
Group(s) inhomogeneous Lorentz      359
Group(s) integral homology (of a polyhedron)      201.D
Group(s) integral homology (of a simplicial complex)      201.C
Group(s) integral singular homology      201.E
Group(s) isotropy      362.B
Group(s) J-      237.I
Group(s) k-      13. A
Group(s) K- (of a compact Hausdorff space)      237.B
Group(s) Klein four-      151.G
Group(s) Kleinian      122.C 243.A
Group(s) knot      235.B
Group(s) L-      450.N
Group(s) lattice      182.B
Group(s) lattice (of a crystallographic group)      92.A
Group(s) lattice-ordered Archimedean      243.G
Group(s) Lie      249.A 423.M
Group(s) Lie transformation      431.C
Group(s) linear fractional      60.B
Group(s) linear isotropy (at a point)      199.A
Group(s) linear simple      151.I
Group(s) link      235.D
Group(s) little      258.C
Group(s) local Lie      423.L
Group(s) local Lie, of local transformations      431.G
Group(s) local one-parameter, of local transformations      105.N
Group(s) locally Euclidean      423.M
Group(s) Lorentz      60.J 258 359.B
Group(s) magnetic      92.D
Group(s) Mathieu      151.H
Group(s) matric      226.B
Group(s) matrix      226.B
Group(s) maximally almost periodic      18.I
Group(s) minimally almost periodic      18.I
Group(s) mixed      190.P
Group(s) modular      122.D
Group(s) Moebius transformation      76.A
Group(s) monodromy (of a system of linear ordinary differential equations)      253.B
Group(s) monodromy (of an n-fold covering)      91.A
Group(s) monothetic      136.D
Group(s) multiplicative      190.A
Group(s) multiplicative (of a field)      149.A 190.B
Group(s) Neron — Severi (of a variety)      15.D 16.P
Group(s) nilpotent      151.C 190.J
Group(s) octahedral      151.G
Group(s) of affine transformations      7.E
Group(s) of automorphisms (of a group)      190.D
Group(s) of canonical transformations      271.F
Group(s) of classes of algebraic correspondences      9.H
Group(s) of collineations      343.D
Group(s) of congruence classes modulo m*      14.H
Group(s) of congruent transformations      285.C
Group(s) of differentiable structures on combinatorial spheres      App. A Table
Group(s) of inner automorphisms (of a group)      190.D
Group(s) of inner automorphisms (of a Lie algebra)      248.H
Group(s) of Janko — Ree type      151.J
Group(s) of motions      139.B
Group(s) of motions in the wider sense      139.B
Group(s) of orientation-preserving diffeomorphisms      114.I
Group(s) of oriented differentiable structures on a combinatorial sphere      114.I
Group(s) of outer automorphisms (of a group)      190.D
Group(s) of outer automorphisms (of a Lie algebra)      248.H
Group(s) of projective transformations      343.D
Group(s) of quotients (of a commutative semigroup)      190.P
Group(s) of Ree type      151.J
Group(s) of the first kind      122.C
Group(s) of translations      7.E 258.A
Group(s) of twisted type      151.I
Group(s) one-parameter semi-, of class $C^0$      378.B
Group(s) one-parameter sub-      249.Q
Group(s) one-parameter, of transformations (of a $C^\infty$-manifold)      105.N
Group(s) one-parameter, of transformations of class $C^r$      126.B
Group(s) ordered      243.G
Group(s) ordered additive      439.B
Group(s) oriented cobordism      114.H
Group(s) orthogonal      60.I 139.B 151.I
Group(s) orthogonal (over a field with respect to a quadratic form)      60.K
Group(s) orthogonal (over a noncommutative field)      60.O
Group(s) orthogonal transformation      60.I
Group(s) p-      151.B
Group(s) p-torsion, of exceptional groups      App. A Table
Group(s) periodic      2.A
Group(s) permutation      190.B
Group(s) permutation, of degree n      151.G
Group(s) Picard (of a commutative ring)      237.J
Group(s) Poincare      170 258.A
Group(s) point (of a crystallographic group)      92.A
Group(s) polychromatic      92.D
Group(s) principal isotropy      431.C
Group(s) profinite      210.C
Group(s) projective class      200.K
Group(s) projective general linear      60.B
Group(s) projective limit      210.C
Group(s) projective special linear      60.B 60.O
Group(s) projective special unitary      60.H
Group(s) projective symplectic      60.L
Group(s) projective unitary      60.F
Group(s) proper Lorentz      60.J 258.A 359.B
Group(s) proper orthogonal      60.I 258.A
Group(s) pseudo- (of topological transformations)      105.Y
Group(s) qth homology      201.B
Group(s) quasi-      190.P
Group(s) quasi-Fuchsian      234.B
Group(s) quaternion      151.B
Group(s) quaternion unimodular      412.G
Group(s) quotient      190.C
Group(s) quotient (of a topological group)      423.E
Group(s) ramification (of a finite Galois extension)      257.D
Group(s) ramification (of a prime ideal)      14.K
Group(s) rational cohomology      200.O
Group(s) reductive      13.Q
Group(s) Ree      151.I
Group(s) regular polyhedral      151.G
Group(s) relative homotopy      202.K
Group(s) relative singular homology      201.L
Group(s) renormalization      111.A
Group(s) restricted holonomy      364.E
Group(s) restricted homogeneous holonomy      364.E
Group(s) Riemann — Roch      366.D
Group(s) Riesz      36.H
Group(s) rotation      60.I 258.A
Group(s) Schottky      234.B
Group(s) semi-      190.P 396.A
Group(s) separated topological      423.B
Group(s) sequence of factor (of a normal chain)      190.G
Group(s) shape      382.C
Group(s) Siegel modular (of degree n)      32.F
Group(s) simple      190.C
Group(s) simply connected (isogenous to an algebraic group)      13.N
Group(s) singular homology      201.G 201.L
Group(s) solvable      151.D 190.I
Group(s) space      92.A
Group(s) special Clifford      61.D
Group(s) special linear      60.B
Group(s) special linear (over a noncommutative field)      60.O
Group(s) special orthogonal      60.I 60.K
Group(s) special unitary      60.F 60.H 60.O
Group(s) spinor      60.I 61.D
Group(s) stability      362.B
Group(s) stable homotopy      202.T
Group(s) stable homotopy (of classical group)      202.V
Group(s) stable homotopy (of the Thom spectrum)      114.G
Group(s) Steinberg (of a ring)      237.J
Group(s) structure (of a fiber bundle)      147.B
Group(s) supersolvable      151.D
Group(s) Suzuki      151.I
Group(s) symmetric      190.B
Group(s) symmetric, of degree n      151.G
Group(s) symplectic      60.L 151.I
Group(s) symplectic (over a noncommutative field)      60.O
Group(s) symplectic transformation      60.L
Group(s) Tate — Shafarevich      118.D
Group(s) tetrahedral      151.G
Group(s) theoretic approach      215.C
Group(s) Tits simple      151.I
Group(s) topological      423
Group(s) topological Abelian      422.A
Group(s) topological transformation      431.A
Group(s) torsion      2.A
Group(s) torsion (of a finite simplicial complex)      201.B
Group(s) torus      422.E
Group(s) total monodromy      418.F
Group(s) totally ordered      243.G
Group(s) totally ordered additive      439.B
Group(s) transformation      431 App. Table
Group(s) transitive permutation      151.H
Group(s) type I      308.L 437.E
Group(s) underlying (of topological group)      423.A
Group(s) unimodular      60.B
Group(s) unimodular locally compact      225.C
Group(s) unit (of an algebraic number field)      14.D
Group(s) unitary      60.F 151.I
Group(s) unitary (over a field)      60.H
Group(s) unitary (relative to an $\varepsilon$-Hermitian form)      60.O
Group(s) unitary symplectic      60.L
Group(s) unitary transformation      60.F
Group(s) universal covering      91.B 423.O
Group(s) unoriented cobordism      114.H
Group(s) value (of a valuation)      439.B 439.C
Group(s) vector      422.E
Group(s) Wall      114.J
Group(s) WC (Weil — Chatelet)      118.D
Group(s) weakly wandering under      136.F
Group(s) web      234.B
Group(s) weight      92.C
Group(s) Weil      6.E 450.H
Group(s) Weil — Chatelet      118.D
Group(s) Weyl (of a BN pair)      13.R
Group(s) Weyl (of a Coxeter complex)      13.R
Group(s) Weyl (of a root system)      13.J
Group(s) Weyl (of a semisimple Lie algebra)      248.R
Group(s) Weyl (of a symmetric Riemannian space)      413.F
Group(s) Weyl (of an algebraic group)      13.H
Group(s) Weyl, affine      413.F
Group(s) Weyl, k-      13.Q
Group(s) White      92.D
Group(s) Whitehead (of a ring)      237.J
Group(s) Witt (of nondegenerate quadratic forms)      348.E
Group(s) Zassenhaus      151.H
Group(s), category of      52.B
Group(s), inductive system of      210.C
Group(s), projective system of      210.C
Group-theoretic approach      215.C
Grouplike      203.F
Groupoid      190.P
Groupoid hyper-      190
Grove, Karsten      178.r
Groves, G.W.      92.r
Growth, infra-exponential      125.AA
Gruenbaum, Branko(1929-)      16.r 89.r
Gruenbaum, F.Alberto      41.C
Gruenwald, Geza(1910-1942)      336.E
Grunsky inequality      438.B
Grunsky, Helmut(1904-1986)      77.E 77.F 77.r 226.r 438.B
Grushin, Viktor Vasil’evich(1938-)      323.K 323.N 345.A
Guckenheimer, John M.(1945-)      126.K 126.N
Guderley, Karl Gottfried(1910-)      205.r
Gudermann function (Gudermannian)      131.F App. Table
Gudermann, Christoph(1798-1852)      131.F 447 App.A Tables 16.III
Guerra, Francesco(1942-)      150.F
Guest, Philip George(1920-)      19.r
Gugenheim, Victor K.A.M.(1923-)      65.D
Guggenheim, Edward Armand(1901—)      419.r
Guide, wave      130.B
Guignard constraint qualification      292.B
Guignard, Monique M.      292.B
Guilford, Joy Paul(1897-)      346.r
Guillemin, Victor W.(1937-)      105.r 191.r 274.I 274.r 325.L 391.J 391.N 428.F 428.G 431.r
Guiraud, Jean-Pierre      41.D
Gulliver, Robert D.,II(1945-)      275.C 334.F
Gumbel, Emil J.(1891-)      374.r
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2022
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте