|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Ito K. — Encyclopedic Dictionary of Mathematics |
|
|
Предметный указатель |
Extension split (of a group) 190.N
Extension strong (of a differential operator) 112.E 112.F
Extension theorem first (in the theory of obstructions) 305.B
Extension transcendental 149.E
Extension transitive (of a permutation group) 151.H
Extension unramified 14.I 257.D
Extension weak (of a differential operator) 112.E 112.F
Extensionality, axiom of (in axiomatic set theory) 33.B
Extensive thermodynamical quantity 419.A
Exterior (of a polygon) 155.F
Exterior (of a segment) 155.B
Exterior (of a subset) 425.N
Exterior (of an angle) 155.B
Exterior algebra (of a linear space) 256.O
Exterior capacity, Newtonian 48.H
Exterior derivative (of a differential form) 105.Q
Exterior differential form of degree r 105.Q
Exterior field equation 359
Exterior point (of a subset) 425.N
Exterior power, p-fold (of a linear space) 256.O
Exterior power, p-fold (of a vector bundle) 147.F
Exterior problem (for the Dirichlet problem) 120.A
Exterior product (of a p-vector and a q-vector) 256.O
Exterior product (of differential forms) 105.Q
Exterior product (of elements of a linear space) 256.O
Exterior product (of two vectors) 442.C
External (in nonstandard analysis) 293.B
External irregular point 338.L
External language 75.C
External law of composition 409.A
External product 200.K
External space (in the static model in catastrophe theory) 51.B
External variable 264
Externally stable set 186.I
Extinction probability 44.B
Extrapolation 176.K 223.A
Extrapolation method polynomial 303.F
Extrapolation method rational 303.F
Extremal (Jordan curve) 275.C
Extremal distance 143.B
Extremal distance reduced 143.B
Extremal function, Koebe 438.C
Extremal horizontal slit mapping 367.G
Extremal length 143
Extremal length defined by Hersch and Pfluger 143.A
Extremal length with weight 143.B
Extremal quasiconformal mapping 352.C
Extremal vertical slit mapping 367.G
Extreme point of a convex set 89.A
Extreme point of a subset of a linear space 424.V
Extremely disconnected 37.M
Extremum conditional relative (of a function) 106.L
Extremum relative (of a function) 106.L
f (cardinal number of all real-valued functions on [0,1]) 49.A
F-compactification 207.C
F-distribution 341.D 374.B App. Table
F-distribution noncentral 374.B
F-free (compact oriented G-manifold) 431.E
F-test 400.G
F.D. generator 136.E
F.D. process 136.E
F.F. 136.F
Faber, Georg(1877-) 228.B 336.I 391.D 438.B
Fabry, Eugene(1856-1944) 339.D
Face (of a complex) 13.R
Face (of a convex cell) 7.D
Face ith (of a singular q-simplex) 201.E
Face operator (in a semisimplicial complex) 70.E
Face q-(of an «-simplex) 70.B
Factor (of a factorial experiment) 102.H
Factor (of a von Neumann algebra) 308.F
Factor (of an element of a ring) 67.H
Factor A-module 277.C
Factor analysis 280.G
Factor analysis model 403.C
Factor composition (in a composition factor series in a group) 190.G
Factor determinant (of a matrix) 269.E
Factor direct (of a direct product of sets) 381.E
Factor direct (of a group) 190.L
Factor Dirichlet discontinuous App. A Table
Factor first (of a class number) 14.L
Factor group 190.C
Factor integrating App. A Table
Factor Krieger 308.I
Factor loading 280.G 346.F
Factor of automorphy 32.A
Factor p- (of an element of a group) 362.I
Factor Powers 308.I
Factor proper (of an element of a ring) 67.H
Factor representation of a topological group 437.E
Factor representation of type I, II, or III 437.E
Factor ring 368.E
Factor score 280.G 346.F
Factor second (of a class number) 14.L
Factor set(s) (in cohomology of groups) 200.M
Factor set(s) (in extensions of groups) 190.N
Factor set(s) (of a crossed product) 29.D
Factor set(s) (of a projective representation) 362.J
Factor set(s) associated (in extensions of groups) 190.N
Factor transformation (of a measure-preserving transformation) 136.D
Factor Ulm (of an Abelian p-group) 2.D
Factorial 330 App. Table
Factorial cumulant 397.G
Factorial cumulant generating function 397.G
Factorial design 102.H
Factorial design balanced fractional 102.I
Factorial design fractional 102.I
Factorial design orthogonal fractional 102.I
Factorial effect 102.H
Factorial experiment 102.H
Factorial experiment 102.H
Factorial function 174.A
Factorial Jordan 330
Factorial moment 397.G
Factorial moment generating functions 397.G
Factorial series 104.F 121.E
Factorization incomplete 302.C
Factorization method 206.B
Factorization regular 251.N
Factorization theorem (of an -function) 43.F
Factorization theorem Neyman 396.F
Factorization theorem unique (in an integral domain) 67.H
Factorization triangular 302.B
Faddeev — Popov ghost 132.C 150.G
Faddeev, Dmitrii Konstantinovich(1907-) 112.P 302.r
Faddeev, Lyudvig Dmitrievich(1934-) 132.C 150.G 375.F 387.G
Faddeeva, Vera Nikolaevna(1906-) 302.r
Fading memory 163.I
Fagnano, Giulio Carlo(1682-1766) 20
Faithful (functor) 52.H
Faithful (linear representation) 362.C
Faithful (permutation representation) 362.B
Faithful (weight on a von Neumann algebra) 308.D
Faithful fully (functor) 52.H
Faithfully flat A-module 277.K
Faithfully flat morphism 16.D
Falb, Peter L.(1936-) 86.D
FALSE 411.E
False position, method of 301.C
False regular 301.C
Falthammar, Carl-Gunne(1931—) 259.r
Faltings, Gerd(1954-) 118.E 145
Family 165.D
Family algebraic (of cycles on an algebraic variety) 16.R
Family covering 16.AA
Family crystal 92.B
Family directed 165.D
Family equicontinuous (of mappings) 435.D
Family exponential, of distributions 396.G
Family indexed by a set 165.D
| Family normal (of functions) 435.E
Family of compact complex manifolds 72.G
Family of confocal central conies 78.H
Family of confocal parabolas 78.H
Family of confocal quadrics 350.E
Family of frames (on a homogeneous space) 110.A
Family of frames of order 1 110.B
Family of functions 165.B 165.D
Family of functions indexed by a set 165.B
Family of mappings 165.D
Family of points 165.D
Family of quasi-analytic functions 58.A
Family of sets 165.D 381.B 381.D
Family of sets indexed by a set 381.D
Family parameter space 72.G
Family quasinormal (of analytic functions) 435.E
Family separating 207.C
Family tight (of probability measures) 341.F
Family uniform, of neighborhood system 436.D
Fan 16.Z
FanKy(1914-) 153.D
Fannes — Verbeure inequality, Roebstorff — 402.G
Fannes, Marcus Marie-Paul(1950-) 402.G
Fano, Gino(1871-1952) 12.B 137.r
Fano, Robert Mario(1917-) 130.r 213.F
Fano, Ugo(1912-) 353.r
FANR 382.C
Fantappie, Luigi 125.A
FAR 382.C
Faraday, Michael(1791-1867) 150.A
Farcy arc 4.B
Farey dissection 4.B
Farey sequence 4.B
Farey, J. 4.B
Farkas theorem, Minkowski — 255.B
Farkas, Julius(1847-1930) 255.B 255.E
Farquhar, Ian E. 402.r
Farrell, O.J. 164.J
Farrell, Roger Hamlin(1929-) 398.r
Fary, Istvan(1922-?) 111.r 365.O
Fast Fourier Transform 142.D
Fast wave 259
Fathi, Albert 126.N
Fatou theorem on bounded functions in a disk 43.D
Fatou theorem on the Lebesgue integral 221.C
Fatou, Pierre(1878-1929) 21.Q 43.D 221.C 272.D 339.D
Fattorini, Hector O. 378.D
Favard,Jean(1902-) 336.C
Favorable a priori distribution, least 398.H
Fazar, W. 376.r
Feasible (flow) 281.B
Feasible directions, method of (in nonlinear programming) 292.E
Feasible region 264.B 292.A
Feasible solution 255.A 264.B
Feasible solution basic 255.A
Federer, Herbert(1920-) 246.r 275.A. 275.r 334.F
Fedorov, Evgraf Stepanovich(1853-1919) 92.F 122.H
Fedorov, Vyatseslav Vasil’evich 102.r
Feedback control 405.C
Feferman, Solomon(1928-) 81.A
Fefferman — Stein decomposition 168.B
Feinberg, Stephen E. 403.r
Feinstein, Amiel 213.F
Feit — Thompson theorem (on finite groups) 151.D
Feit, Walter(1930-) 151.D 151.J 151.r 362.r
Fejer kernel 159.C
Fejer mean 159.C
Fejer theorem 159.C
Fejer, Lipot(Leopold)(1880-1959) 43.J 77.B 159.C 255.D
Fekete, Mihaly(Michael)(1886-1957) 48.D 445
Feldblum 179.B
Feldman, Jacob(1928-) 136.F
Fell, James Michael Gardner(1923-) 308.M
Feller process 261.B
Feller transition function 261.B
Feller, William(1906-1970) 112.J 115.A 115.r 250.r 260.J 261.A 261.B 263.r 341.r 342.r 378.B
FelTerman, Charles L.(1949-) 21 .P 21.Q 168.B 168.r 224.E 262.B 320.r 344.D 344.F 345.A 345.B
Fel’dman, Naum Il’ich 118.D 430.D 430.r
Fenchel, Werner(1905-) 89.r 109 111.F 365.O
Fendel, D. App.B Table
Fenstad, Jens Erik 356.F 365.r
Fermat number 297.F
Fermat principle 180.A 441.C
Fermat problem 145
Fermat theorem 297.G
Fermat, P. de 144
Fermat, P. de, last theorem of 145
Fermat, Pierre de(1601-1665) 4.D 20 109 144 145 180.A 265 296.A 297.F 297.G 329 342.A 441.C
Fermi particle 132.A
Fermi statistics 377.B 402.E
Fermi, Enrico(1901-1954) 132 287.A 287.r 351.H 377.B 402.E
fermions 132.A 351.H
Fernique, Xavier 176.G
Ferrar formula, Dixon — App. A Table
Ferrar, William Leonard(1893-) App.A Table
Ferrari formula App. A Table
Ferrari, Ludovico(1522-1565) 8 10.D 360 444 App.A Table
Ferrero, Bruce 14.L 450.J
Ferrers, N.M. 393.C
Ferus, Dirk 365.E 365.J 365.N 365.O 365.r
Feshbach, Herman(1917—) 25.r
Fet, Abram Il’ich(1924-) 279.G
Feynman amplitude 146.B
Feynman diagram 146.B
Feynman graphs 146.A 146.B 386.C
Feynman integrals 146
Feynman rule 146.A 146.B
Feynman — Kac formula 351.F
Feynman — Kac — Nelson formula 150.F
Feynman, Richard Phillips(1918—) 132.C 146.A 146.B 150.A 150.F 351.F 361.A
FFT 142.D
Fiat A-module 277.K
Fiat function 58.C
Fiber (of a fiber bundle) 147.B
Fiber (of a fiber space) 148.B
Fiber (of a morphism) 16.D
Fiber bundle(s) 147
Fiber bundle(s) associated 147.D
Fiber bundle(s) complex analytic 147.O
Fiber bundle(s) equivalent 147.B
Fiber bundle(s) isomorphic 147.B
Fiber bundle(s) of class 147.O
Fiber bundle(s) orientable 147.L
Fiber bundle(s) principal 147.C
Fiber bundle(s) real analytic 147.O
Fiber geometric (of a morphism) 16.D
Fiber homotopy equivalent 237.I
Fiber homotopy equivalent stably 237.I
Fiber homotopy type, spherical G- 431.F
Fiber integration along (of a hyperfunction) 274.E
Fiber mapping (map), linear 114.D
Fiber product 52.G
Fiber space(s) 72.I 148
Fiber space(s) algebraic 72.I
Fiber space(s) locally trivial 148.B
Fiber space(s) n-connective 148.D
Fiber space(s) Spivak normal 114.J
Fiber space(s), spectral sequence of (of singular cohomology) 148.E
Fiber sum 52.G
Fiber term (of a spectral sequence) 200.J
Fibered manifold 428.F
Fibering, Hopf 147.E
Fibonacci sequence 295.A
Fibonacci(Leonardo da Pisa, Leonardo Pisano)(c.1174-c.1250) 295.A 372
Fibration (of a topological space) 148.B
Fibration, Milnor 418.D
Fictitious state 260.F
Fiducial distribution 401.F
Fiducial interval 401.F
Fiedler, Wilhelm 350.r
|
|
|
Реклама |
|
|
|