Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Homotopy operations      202.O
Homotopy restricted      202.B
Homotopy set      202.B
Homotopy sphere      65.C
Homotopy theorem first (in obstruction theory)      305.B
Homotopy theorem second (in obstruction theory)      305.C
Homotopy theorem simple      65.C
Homotopy theorem third (in obstruction theory)      305.C
Homotopy theory      202
Homotopy theory de Rham      114.L
Homotopy type      202.F
Homotopy type (of a link)      235.D
Homotopy type invariant      202.F
Homotopy type spherical G-fiber      431.F
Homotopy-associative (multiplication)      203.D
Honda, Taira(1932-1975)      3.C 450.Q 450.S 450.r
Hong Sing Leng      365.N
HongImsik(1916-)      228.B 228.r
Hood, William Clarence(1921-)      128.r
Hooke law      271.G
Hooke, Robert(1635-1703)      271.G
Hooker, Percy Francis      214.r
Hooley, Christopher(1928-)      123.E 123.r 295.E
Hopcroft, John E.(1939-)      31.r 71.r 75 186.r
Hopf algebra homomorphism      203.H
Hopf algebra(s)      203
Hopf algebra(s) dual      203.C
Hopf algebra(s) elementary      203.D
Hopf algebra(s) graded      203.C
Hopf bifurcation      126.M
Hopf bundle      147.E
Hopf classification theorem      202.I
Hopf comultiplication      203.D
Hopf coproduct      203.D
Hopf extension theorem      270.E
Hopf homomorphism, generalized (of homotopy groups of spheres)      202.U
Hopf integrodifferential equation, Wiener —      222.C
Hopf invariant      202.U
Hopf invariant generalized      202.Q
Hopf invariant modulo p      202.S
Hopf mapping (Hopf map)      147.E
Hopf surface      72.K
Hopf theorem (continuous vector field)      153.B
Hopf weak solution      204.C
Hopf, Eberhard(1902-1983)      111.I 126.A 126.M 136.B 162.B 162.C 162.G 162.r 204.B 204.C 204.r 222.C 234.r 270.E 286.U 286.X 433.B 433.C
Hopf, Heinz(1894-1971)      65.r 72.K 93.r 99.r 109 111.I 111.r 126.G 147.E 153.B 178.A 201.r 202.A 202.B 202.I 202.Q 202.S 202.U 202.V 202.r 203.A 203.C 203.D 203.H 249.V 305.A 365.H 425.r 426.* 426.r
Hopffibering      147.E
Hopkins, Charles      368.F
Horikawa, Eiji(1947-)      72.K 72.r
Horizon, event      359.F
Horizontal components of a homogeneous space      110.A
Horizontal components of a vector field      80.C
Horizontal slit mapping, extremal      367.G
Horizontal subspace      191.C
Horizontal vector (in a differentiable principal fiber bundle)      80.C
Hormander theorem      112.C 112.D
Horn, Jacob(1867-1946)      107.A 206.D 314.A
Horned sphere, Alexander      65.G
Horner method      301.C
Horner, William George(1786-1837)      301.C
Horocycle flow      136.G
Horosphere      218.G
Horowitz, Ellis(1944-)      71.r
Horrocks, Geoffrey(1932-)      16.r
Horseshoe diffeomorphism      126.J
Hosokawa Fujitsugu(1930-)      235.D
Hosokawa polynomial      235.D
Hotelling $T^2$ statistic      280.B
Hotelling $T^2$ statistic noncentral      374.C
Hotelling, Harold(1895-1973)      280.B 374.C
Hotta, Ryoshi(1941-)      437.X
Householder method      298.D
Householder transformation      302.E
Householder, Alston Scott(1904-)      298.D 301.r 302.E
Houseman, E.E.      19.r
Howard, Ronald Arthur(1934-)      127.E
Howarth, Leslie(1911-)      205.r
Hrbacek, Karel      33.r 293.E 293.r
Hsiang, Wu-Chung(1935-)      114.J 114.K 431.D 431.r
Hsiang, Wu-Yi(1937-)      275.F 365.K 431.D 431.r
Hsiung Chuan-Chih(1916-)      364.F 365.H
Hsue, Kwang-Ch’i(1562-1633)      57.C
Hu, Sze-Tsen(1914-)      79.r 91.r 148.r 201.r 277.r
Hu, TE Chiang      281.r
Hua, Loo-Keng(Hua Luo K’ang)(1910-1985)      4.A 4.E 4.r 122.E 242.A 242.r 295.E
Huang, Kerson(1928-)      402.r
Huber, Peter J.      371.A 371.H 371.J 371.r 399.H 399.P 399.r
Huber—Dyson, Verena      362.r
Hudson, John F.P.      65.C 65.D
Huff, Robert E.(1942-)      443.H
Hugenholtz, Nicholaas Mariruis(1924-)      308.H
Hugoniot relation, Rankine —      204.G 205.B
Hugoniot, Pierre Henri(1851-1887)      51.E 204.G 205.B
Hukuhara problem      315.C
Hukuhara theorem, Dini —      314.D
Hukuhara, Masuo(1905-)      30.C 30.r 88.A 254.D 288.B 288.r 289.B—D 314.A 314.C 314.D 315.C 316.E 388.B 443.A
Hull closed convex      424.H
Hull convex      89.A
Hull convex (in an affine space)      7.D
Hull convex (in linear programming)      255.D
Hull convex (of a boundary curve)      275.A
Hull holomorphic      21.H
Hull, Thomas Edward(1922-)      206.r 303.r
Hull-kernel topology      36.D
Human death and survival, model of      214.A
Humbert, Georges(1859-1921)      83.D
Humphreys, James E.(1939-)      13.r 248.r
Hunt process      261.B
Hunt — Stein lemma      400.F
Hunt, Gilbert Agnew(1916-)      5.H 162 176.G 260.J 260.r 261.A 261.B 338.N 338.O 400.F 407.B
Hunt, Richard A.      159.H 168.B 168.r 224.E
Huntley, H.E.      116.r
Huppert, Bertram      151.D 151.r
Hurewicz homorphism      202.N
Hurewicz isomorphism theorem      202.N
Hurewicz theorem, generalized      202.N
Hurewicz — Steenrod isomorphism theorem      148.D
Hurewicz — Uzawa gradient method, Arrow —      292.E
Hurewicz, Witold(1904-1956)      117.A 117.C 117.r 136.B 148.D 202.A 202.B 202.N 202.r 426
Hurley, Andrew Crowther(1926-)      92.F
Hurst, Charles A.(1923-)      212.A 402.r
Hurwicz, Leonid      255.D 255.E 255.r 292.E 292.F 292.r
Hurwitz formula, Riemann- (on coverings of a nonsingular curve)      9.I
Hurwitz relation (on homomorphisms of Abelian varieties)      3.K
Hurwitz relation Riemann —      367.B
Hurwitz theorem      10.E
Hurwitz zeta function      450.B
Hurwitz, Adolf(1859-1919)      3.K 9.I 10.E 11.D 83.B 134.r 198.r 339.D 367.B 450.B 450.r
Husemoller, Dale H.(1933-)      15.r 56.r 147.r
Huxley differential equation, Hodgkin —      291.F
Huxley, Andrew Fielding(1917-)      291.F
Huxley, Martin Neil(1944-)      123.E 123.r
Huygens principle      325.B 446
Huygens principle in the wider sense      325.D
Huygens, Christiaan(1629-1695)      93.H 245 265 325.B 325.D 446
Huzita, Sadasuke(1734-1807)      230
Hwa, Rudolph C(1931-)      146.r
Hybrid computer      19.E
Hydrodynamics      205
Hydromagnetic dynamo theory      259
Hydromagnetics      259
Hydrostatics      205.A
Hypatia(370?-418)      187
Hyperalgebra      203.I
Hyperarithmetical function      356.H
Hyperarithmetical hierarchy of degrees of recursive unsolvability      356.H
Hyperarithmetical predicate      356.H
Hyperbola      78.A
Hyperbola conjugate      78.E
Hyperbola equilateral      78.E
Hyperbola rectangular      78.E
Hyperbolic (closed invariant set of a dynamical system)      126.J
Hyperbolic (differential operator)      112.A 325.H
Hyperbolic (linear mapping)      126.G
Hyperbolic (partial differential equation)      325.A 325.E
Hyperbolic (Riemann surface)      367.D 367.E
Hyperbolic (simply connected domain)      77.B
Hyperbolic (space form)      412.H
Hyperbolic closed orbit      126.G
Hyperbolic complete      21.O
Hyperbolic coordinates equilateral      90.C App. Table
Hyperbolic coordinates rectangular      90.C
Hyperbolic cosecant      131.F
Hyperbolic cosine      131.F
Hyperbolic cotangent      131.F
Hyperbolic cylinder      350.B
Hyperbolic cylindrical coordinates      App. A Table
Hyperbolic cylindrical surface      350.B
Hyperbolic differential equations, system of (in the sense of Petrovskii)      325.G
Hyperbolic fixed point      126.G
Hyperbolic function      131.F
Hyperbolic geometry      285.A
Hyperbolic in the sense of Garding      325.F
Hyperbolic in the sense of Petrovskii      325.F
Hyperbolic in the strict sense      325.F
Hyperbolic knot      235.E
Hyperbolic manifold      21.O 235.E
Hyperbolic motion      420.D
Hyperbolic paraboloid      350.B
Hyperbolic plane      122.C
Hyperbolic point (on a surface)      111.H
Hyperbolic quadric hypersurface      350.I
Hyperbolic regularly      325.A 325.F
Hyperbolic secant      131.F
Hyperbolic sine      131.F
Hyperbolic singular point      126.G
Hyperbolic space      285.C
Hyperbolic space Hermitian      412.G
Hyperbolic space quaternion      412.G
Hyperbolic space real      412.G
Hyperbolic spiral      93.H
Hyperbolic strongly      325.H
Hyperbolic symmetric (in the sense of Friedrichs)      325.G
Hyperbolic tangent      131.F
Hyperbolic transformation      76.F
Hyperbolic type, partial differential equation of      321.E 325
Hyperbolic type, primitive      92.C
Hyperbolic weakly      325.H
Hyperbolic-elliptic motion      420.D
Hyperbolic-parabolic motion      420.D
Hyperbolically embedded      21.O
Hyperboloid of one sheet      350.B
Hyperboloid of revolution of one or two sheets      350.B
Hyperboloid of two sheets      350.B
Hyperboloidic position      350.B
Hypercohomology      200.J
Hyperconstructive ordinal      81.E
Hypercubic type, primitive      92.C
Hyperelliptic curve      9.D
Hyperelliptic integral      11.C
Hyperelliptic Riemann surface      11.C
Hyperelliptic surface      72.K
Hyperfinite      293.B 308.I
Hyperfunction      125
Hyperfunction confluent      167.A App. Tables 19.I
Hyperfunction exponentially decreasing Fourier      125.BB
Hyperfunction Fourier      125.BB
Hyperfunction Fourier ultra-      125.BB
Hyperfunction Gauss      App. A Table
Hyperfunction in the Dirichlet problem      120.C
Hyperfunction modified Fourier      125.BB
Hyperfunction Sato      125.V
Hypergeometric differential equation      260.A App. Table
Hypergeometric distribution      341.D 397.F App. Table
Hypergeometric distribution multidimensional      App. A Table
Hypergeometric distribution multiple      341.D
Hypergeometric function(s)      209 App. Table
Hypergeometric function(s) and spherical functions      App. A Table
Hypergeometric function(s) Appell, of two variables      206.D App. Table
Hypergeometric function(s) Barnes extended      206.G App. Table
Hypergeometric function(s) of confluent type      167.A App. Table
Hypergeometric function(s)of the hyperspherical differential equation      393.E
Hypergeometric function(s)with matrix argument      206.E
Hypergeometric integral      253.B
Hypergeometric series      206.A
Hypergeometric type, special function of      389.A
Hypergroup      190.P
Hypergroupoid      190.P
Hyperinvariant (under an operator)      251.L
Hyperplanar symmetry (of an affine space)      139.B
Hyperplane coordinates in projective geometry      343.C
Hyperplane coordinates of an affine frame      7.C
Hyperplane section      418.I
Hyperplane(s) at infinity (in affine geometry)      7.B
Hyperplane(s) characteristic (of a partial differential equation of hyperbolic type)      325.A
Hyperplane(s) in a projective space      343.B
Hyperplane(s) in an affine space      7.A
Hyperplane(s) pencil of (in a projective space)      343.B
Hyperplane(s) regression      403.D
Hyperplane(s) tangent (of a quadric hypersurface)      343.E
Hyperquadric in a projective space      343.D 350.I
Hyperquadric in an affine space      350.G
Hypersonic flow      205.C
Hypersphere      76.A
Hypersphere geometry      76.A
Hypersphere imaginary      76.A
Hypersphere limiting (in hyperbolic geometry)      285.C
Hypersphere non-Euclidean      285.C
Hypersphere oriented real      76.A
Hypersphere point      76.A
Hypersphere proper (in hyperbolic geometry)      285.C
Hypersphere real      76.A
Hyperspherical coordinates, (n+2)-      76.A 90.B
Hyperspherical differential equation      393.E
Hypersurface element(s)      82.A 324.B
Hypersurface element(s), union of      82.A
Hypersurface(s) (in a Euclidean space)      111.A
Hypersurface(s) (of an algebraic variety)      16.A
Hypersurface(s) central quadric      350.G
Hypersurface(s) characteristic (of a partial differential equation of hyperbolic type)      325. A
Hypersurface(s) coordinate (in a Euclidean space)      90.C
Hypersurface(s) elliptic quadric      350.G
Hypersurface(s) homogeneous      344.A
Hypersurface(s) hyperbolic quadric      350.G
Hypersurface(s) integral (partial differential equations)      320.A
Hypersurface(s) noncentral quadric      350.G
Hypersurface(s) nondegenerate      344.A
Hypersurface(s) parabolic quadric      350.G
Hypersurface(s) pencil of quadric      343.E
Hypersurface(s) properly (n—l)-dimensional quadric      350.G
Hypersurface(s) quadric      343.D 350.G 350.I
Hypersurface(s) quadric conical      350.Q
Hypersurface(s) quadric cylindrical      350.Q
Hypersurface(s) regular quadric      343.E
Hypersurface(s) singular quadric (of the hth species)      343.E
Hypersurface(s) spherical real      344.C
Hypo-Dirichlet      164.B
Hypocontinuous (bilinear mapping)      424.Q
Hypocylcoid      93.H
Hypoelliptic      112.D 189.C 323.I
Hypoelliptic analytically      112.D 323.I
Hypofunction (in the Dirichlet problem)      120.C
Hyponormal      251.K
Hypothesis alternative      400.A
Hypothesis composite      400.A
Hypothesis ergodic      136.A 402.C
Hypothesis general linear      400.H
Hypothesis Lindeloef      123.C
Hypothesis null      400.A
Hypothesis Riemann      450.B 450.P
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте