Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Integral(s) Lebesgue — Radon      94.C
Integral(s) Lebesgue — Stieltjes      94.C 166.C
Integral(s) logarithmic      167.D App. Table
Integral(s) Lommel      39.C
Integral(s) multiple (in Lebesgue integral)      221.E
Integral(s) multiple (in Riemann integral)      216.F
Integral(s) n-tuple (in Riemann integral)      216.F
Integral(s) of a function with respect to a volume element      105.W
Integral(s) of a vector field      App. A Table
Integral(s) of angular momentum      420.A
Integral(s) of Cauchy type      198.B
Integral(s) of the center of mass      420.A
Integral(s) over a singular chain      105.T
Integral(s) over an oriented manifold      105.T
Integral(s) Pettis      443.F
Integral(s) Poisson      168.B 193.G
Integral(s) probability      App. A Table
Integral(s) regular first      126.H
Integral(s) repeated (in Lebesgue integral)      221.E
Integral(s) repeated (in Riemann integral)      216.G
Integral(s) Riemann      37.K 216.A
Integral(s) Riemann lower      216.A
Integral(s) Riemann upper      216.A
Integral(s) Riemann — Stieltjes      94.B 166.C
Integral(s) scalar      443.F 443.I
Integral(s) sine      167.D App. Table
Integral(s) singular      217.J
Integral(s) spectral      390.D
Integral(s) Stieltjes      94.B
Integral(s) stochastic      261.E 406.B
Integral(s) stochastic, of Stratonovich type      406.C
Integral(s) surface      94.A 94.E
Integral(s) surface (with respect to a surface element)      94.E
Integral(s) trigonometric      160.A
Integral(s) vector      443.A
Integral(s) vector-valued      443.A
Integral(s) with respect to $\lambda$ (of a distribution)      125.H
Integrally closed (in a ring)      67.I
Integrally closed completely (ring)      67.I
Integrally closed ring      67.I
Integrally dependent element (of a ring)      67.I
integrand      216.A
Integrate      216.A
Integrate (an ordinary differential equation)      313.A
Integrating factor      App. A Table
Integration along a fiber (of a hyperfunction)      274.E
Integration automatic, scheme      299.C
Integration by parts      216.C
Integration by parts (in the Stieltjes integral)      94.C
Integration by parts (on D-integral)      100.G
Integration constant (in a general solution of a differential equation)      313.A
Integration formula based on variable transformation      299.B
Integration formula Gauss (in the narrow sense)      299.A
Integration formula Poisson      App. A Table
Integration formula Villat      App. A Table
Integration graphical      19.B
Integration numerical      299
Integration Romberg      299.C
Integration, contour of (of curvilinear integral)      94.D
Integration, domain of      216.F
Integration, Jacobi’s second method of      324.D
Integration, path of (of curvilinear integral)      94.D
Integrodifferential equation(s)      163.A 222
Integrodifferential equation(s) of Fredholm type      222.A
Integrodifferential equation(s) of Volterra type      222.A
Integrodifferential equation(s) Prandtl’s      222.C
Integrodifferential equation(s) Wiener — Hopf      222.C
Intensity, traffic      260.H
Intensive (thermodynamical quantity)      419.A
Interaction      102.H
Interest, assumed rate of      214.A
Interference (of waves)      446
Interior (of a manifold)      105.B
Interior (of a polygon)      155.F
Interior (of a segment)      155.B
Interior (of a set)      425.B
Interior (of a simplex)      70.C
Interior (of an angle)      139.D 155.B
Interior capacity, Newtonian      48.F
Interior cluster set      62.A
Interior field equation      359.D
Interior operator      425.B
Interior point      425.B
Interior problem (in Dirichlet problems)      120.A
Interior product (of a differential form with a vector field)      105.Q
Intermediate convergent (of an irrational number)      83.B
Intermediate field      149.D
Intermediate integrals      App. A Table
Intermediate integrals of Monge — Ampere equation      278.B
Intermediate-value theorem      84.C
Intermittent structure      433.C
Internal (in nonstandard analysis)      293.B
Internal energy      419.A
Internal irregular point      338.L
Internal law of composition (of a set)      409.A
Internal product      200.K
Internal space in catastrophe theory (in static model)      51.B
Internal state      31.B
Internal symmetry      150.B
Internally stable set      186.I
Internally thin set      338.G
International notation (for crystal classes)      92.B
International system of units      414.A
Interpolating (for a function algebra)      164.D
Interpolating sequence      43.F
Interpolation (of a function)      223 App. Table
Interpolation (of a stationary process)      176.K 395.E
Interpolation Chebyshev      223.A 336.J
Interpolation coefficient, Lagrange’s      223.A
Interpolation formula      223.A
Interpolation formula Bessel      App. A Table
Interpolation formula Everett      App. A Table
Interpolation formula Gauss      App. A Table
Interpolation formula Gauss’s backward      223.C
Interpolation formula Gauss’s forward      223.C
Interpolation formula Newton      App. A Table
Interpolation formula Newton’s backward      223.C
Interpolation formula Newton’s forward      223.C
Interpolation formula Stirling      App. A Table
Interpolation function      223.A
Interpolation inverse      223.A
Interpolation Lagrange      223.A
Interpolation method      224.A
Interpolation of operators      224
Interpolation polynomial      223.A
Interpolation polynomial Hermite      223.E
Interpolation polynomial Lagrange      336.G App. Table
Interpolation polynomial Newton      336.G
Interpolation polynomial trigonometric      336.E
Interpolation problem      43.F
Interpolation scheme, Aitken      223.B
Interpolation space      224.A
Interpolation space complex      224.B
Interpolation space real      224.C
Interpolation spline      223.F
Interpolation theorem      224.B 224.C
Interpolator formula      299.A
Interquartile range      397.C
intersect      155.B
Intersect properly (on a variety)      16.G
Intersect transversally      105.L
Intersection (of events)      342.B
Intersection (of projective subspaces)      343.B
Intersection (of sets)      381.B
Intersection (of subspaces of an affine space)      7.A
Intersection chart      19.D
Intersection complete      16.A
Intersection multiplicity (of two subvarieties)      16.Q
Intersection number (of divisors)      15.C
Intersection number (of homology classes)      65.B 201.O
Intersection number (of sheaves)      16.E
Intersection number self-      15.C
Intersection product (in algebraic varieties)      16.Q
Intersection product (in homology theory)      201.O
Intersection property, finite      425.S
Intersection theorem (of affine geometry)      7.A
Intersection theorem (of projective geometry)      343.B
Intersection theorem Cantor’s      273.F
Intersection theorem Krull      284.A
Interval (in a Boolean algebra)      42.B
Interval (in a lattice)      243.C
Interval (in a vector lattice)      310.B
Interval (in an ordered set)      311.B
Interval (in real number space)      355.C
Interval basic      4.B
Interval closed      140 355.C
Interval confidence      399.Q
Interval estimation      399.Q 401.C
Interval fiducial      401.F
Interval finite      355.C
Interval function      380.A
Interval function additive      380.B
Interval function continuous additive      380.B
Interval infinite      355.C
Interval of absolute stability      303.G
Interval of continuity (for a probability distribution)      341.C
Interval of relative stability      303.G
Interval open      140 355.C
Interval principle of nested      87.C
Interval supplementary      4.B
Interval tolerance      399.R
Intrablock analysis      102.D
Intransitive (permutation group)      151.H
Intrinsic angular momentum      415.G
Intrinsic homology      114.H
Intuitionism      156.A
Intuitionism semi-      156.C
Intuitionistic logic      411.L
Invariance homotopy      201.D
Invariance isospin      351.J
Invariance Lorentz      150.B
Invariance of a confidence region      399.Q
Invariance of dimension, theorem on (of Euclidean spaces)      117.D
Invariance of domain, Brouwer theorem on      117.D
Invariance of speed of light, principle of      359.B
Invariance principle (of hypothesis testing)      400.E
Invariance principle (of wave operators)      375.B
Invariance principle Donsker’s      250.E
Invariance principle Strassen’s      250.E
Invariance theorem of analytic relations      198.K
Invariance topological (homology groups)      201.A
Invariant decision function      398.E
Invariant derivation (on an Abelian variety)      3.F
Invariant differential form (on an Abelian variety)      3.F
Invariant distribution(s) (of a Markov chain)      260.A
Invariant distribution(s) (of second quantization)      377.C
Invariant estimator      399.I
Invariant estimator best      399.I
Invariant field      172.B
Invariant integral, Hilbert’s      46.C
Invariant level $\alpha$ test, uniformly most powerful (UMP)      400.E
Invariant Markov process      5.H
Invariant measure problem      136.C
Invariant measure(s)      225
Invariant measure(s) (of a Markov chain)      260.A
Invariant measure(s) (of a Markov process)      261.F
Invariant measure(s) (under a transformation)      136.B
Invariant measure(s) G-      225.B
Invariant measure(s) quasi-      225.J
Invariant measure(s) relatively      225.H
Invariant measure(s) smooth      126. J
Invariant measure(s) sub-      261.F
Invariant measure(s) transverse      154.H
Invariant statistic      396.I
Invariant statistic maximal      396.I
Invariant subgroup (of a group)      190.C
Invariant subspace (of a linear operator)      164.H
Invariant subspace doubly      164.H
Invariant tensor field left      249.A
Invariant tensor field right      249.A
Invariant test      400.E
Invariant test almost      400.E
Invariant torus      126.L
Invariant(s)      App. A Table
Invariant(s) $\mathfrak{p}$- (of a central simple algebra)      29.G
Invariant(s) (decision problem)      398.E
Invariant(s) (element under a group action)      226.A
Invariant(s) (function algebra)      164.H
Invariant(s) (hypothesis)      400.E
Invariant(s) (in the Erlangen program)      137
Invariant(s) (measure)      136.B 225 270.L
Invariant(s) (of a cohomology class of a Galois group)      59.H 257.E
Invariant(s) (of a normal simple algebra)      257.G
Invariant(s) (of an Abelian group)      2.B
Invariant(s) (of an elliptic curve)      73.A
Invariant(s) (S-matrices)      386.B
Invariant(s) (subspace of a Banach space)      251.L
Invariant(s) (underflow)      126.D
Invariant(s) absolute      12.A 226.A
Invariant(s) absolute integral      219.A
Invariant(s) almost G-      396.I
Invariant(s) Arf — Kervaire      114.J
Invariant(s) basic      226.B
Invariant(s) birational      12.A
Invariant(s) Browder — Livesay      114.L
Invariant(s) Cartan (of a finite group)      362.I
Invariant(s) Cartan relative integral      219.B
Invariant(s) conformal      77.E
Invariant(s) covering linkage      235.E
Invariant(s) differential (on an m-dimensional surface)      110.A
Invariant(s) Eilenberg — Postnikov (of a CW-complex)      70.G
Invariant(s) fundamental (of a space with a Lie transformation group)      110. A
Invariant(s) fundamental differential (of a surface)      110.B
Invariant(s) G- (element)      226.A
Invariant(s) G- (measure)      225.A
Invariant(s) G- (statistics)      396.I
Invariant(s) generalized Hopf      202.Q
Invariant(s) Hasse (of a central simple algebra)      29.G
Invariant(s) homotopy      202.B
Invariant(s) homotopy type      202.F
Invariant(s) Hopf      202.S 202.U
Invariant(s) Hopf, modulo p      202.S
Invariant(s) integral      219
Invariant(s) isomorphism (on a measure space)      136.E
Invariant(s) Iwasawa      14.L
Invariant(s) k- (of a CW-complex)      70.G
Invariant(s) left (metric in a topological group)      423.I
Invariant(s) left, Haar measure      225.C
Invariant(s) left, tensor field      249.A
Invariant(s) metric (on a measure space)      136.E
Invariant(s) Milnor      235.D
Invariant(s) negatively      126.D
Invariant(s) normal      114.J
Invariant(s) of n-ary form of degree d      226.D
Invariant(s) of order p      110. A
Invariant(s) of weight w      226.D
Invariant(s) PCT      386.B
Invariant(s) Poincare’s differential      74.G
Invariant(s) positively      126.D
Invariant(s) rearrangement      168.B
Invariant(s) relative      12.A 226.A
Invariant(s) relative integral      219.A
Invariant(s) right, Haar measure      225.C
Invariant(s) right, tensor field      249.A
Invariant(s) sampling procedure      373.C
Invariant(s) semi-      226.A
Invariant(s) semi- (of a probability distribution)      341.C
Invariant(s) shape      382.C
Invariant(s) spectral      136.E
Invariant(s) TCP-      386.B
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте