Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Modified Fourier hyperfunction      125.BB
Modified indicator function      341.C
Modified Mathieu differential equation      268.A
Modified Mathieu function      268.A
Modified Mathieu function of the first kind      268.D
Modified Mathieu function of the second kind      268.D
Modified Mathieu function of the third kind      268.D
Modified minimum chi-square method      400.K
Modified wave operator      375.B
Modular automorphism      308.H
Modular character (of a modular representation)      362.I
Modular form Hilbert, of weight k      32.G
Modular form of level N      32.C
Modular form Siegel, of weight k      32.F
Modular form, Hilbert, of dimension, k      32.G
Modular form, Siegel, of dimension, k      32.F
Modular function (of a locally compact group)      225.D
Modular function Hilbert      32.G
Modular function of level N      32.C
Modular function Siegel, of degree n      32.F
Modular group      122.D
Modular group elliptic      122.D
Modular group Hilbert      32.G
Modular groupSiegel, of degree n      32.F
Modular lattice      243.F
Modular law (in a lattice)      243.F
Modular operator      308.H
Modular represenation (of a finite group)      362.G
Modular surface, Hilbert      15.H
Modular, weakly (in quantum mechanics)      351.L
Module(s)      277
Module(s) $\mathcal{O}$-      383.I
Module(s) (of a family of curves)      143.A
Module(s) (R, S)-injective      200.K
Module(s) (R, S)-projective      200.K
Module(s) A-      277.C
Module(s) Artinian      277.I
Module(s) category of left (right) R-      52.B
Module(s) character (of an algebraic group)      13.D
Module(s) coefficient      200.L
Module(s) cohomology      200.F
Module(s) connected graded      203.B
Module(s) defining (of a linear system)      16.N
Module(s) degenerate      118.D
Module(s) divisible A-      277.D
Module(s) dual      277.K
Module(s) dual graded      203.B
Module(s) duality theorem for $\Omega$-      422.L
Module(s) factor A-      277.C
Module(s) faithfully flat A-      211.K
Module(s) flat A-      277.K
Module(s) free      277.G
Module(s) generalized      143.B
Module(s) graded A-      200.B
Module(s) homology      200.C
Module(s) induced      277.L
Module(s) injective A-      211.K
Module(s) Jordan      231.C
Module(s) left A-      277.D
Module(s) Noetherian      277.I
Module(s) of A-homomorphisms (between A-modules)      277.E
Module(s) of boundaries      200.C
Module(s) of coboundaries      200.F
Module(s) of cocycles      200.F
Module(s) of cycles      200.C
Module(s) of finite length      277.I
Module(s) of homomorphisms (between two modules)      277.B
Module(s) of quotients of an R-module with respect to S      67.G
Module(s) of representations (of a compact group)      69.D
Module(s) over A      211.C
Module(s) projective A-      211.K
Module(s) representation (of a linear representation)      362.C
Module(s) right A-      277.D
Module(s) torsion A-      277.D
Module(s) with operator domain A      211.C
Moduli functor      16.W
Moduli scheme      16.W
Moduli scheme coarse      16.W
Moduli scheme fine      16.W
Moduli space      16.W 72.G
Moduli space local      72.G
Moduli space of curves of genus g      9.J
Modulus (= a conformal invariant)      11.B 77.E
Modulus (in Jacobi elliptic functions)      134.J App. Table
Modulus (moduli) (of a complex number)      74.B
Modulus (of a complex torus of dimension 1)      32.C
Modulus (of a congruence)      297.G
Modulus (of a locally multivalent function)      438.E
Modulus (of a ring)      77.E
Modulus (of an elliptic integral)      134.A App. Table
Modulus complementary (in Jacobi elliptic functions)      134.J App. Table
Modulus complementary (of an elliptic integral)      App. A Table
Modulus local maximum, principle      164.C
Modulus maximum, principle (for a holomorphic function)      43.B
Modulus number      418.E
Modulus of continuity (of a function)      84.A
Modulus of continuity of kth order (of a continuous function)      336.C
Modulus of elasticity in shear      271.G
Modulus of elasticity in tension      271.G
Modulus of rigidity      271.G
Modulus periodicity (of an elliptic integral)      134.A
Modulus Young’s      271.G
Modulus, field of      73.B
modus ponens      411.I
Moebius band      410.B
Moebius function      66.C 295.C
Moebius geometry      76.A
Moebius strip      410.B
Moebius transformation      74.E 76.A
Moebius transformation group      76.A
Moebius, August Ferdinand(1790-1868)      66.C 74.E 76.A 267 295.C 410.B
Moedomo, S.      443.H
Mohr, Georg(1640-1697)      179.B
Moise, Edwin Evariste (1918-)      65.C 70.C 79.D 93.r 139.r 410.r
Moiseiwitseh, Benjamin Lawrence(1927-)      441.r
Moishezon criterion, Nakai- (of ampleness)      16.E
Moishezon space      16.W
Moishezon, Boris Gershevich(1937-)      16.E 16.U 16.W 72.r
Molchanov, Stanislav Alekseevich      115.D 340.r
Moldestad, Johan(1946-)      356.F 356.r
Mole numbers      419.A
Moler, CleveB.(1939-)      298.r 302.r
moment      397.C
Moment (kth)      341.B
Moment about the mean (kth)      341.B
Moment absolute (kth)      341.B
Moment bivariate      397.H
Moment central      397.C
Moment conditonal      397.I
Moment factorial      397.G
Moment generating function      177.A 341.C 397.G 397.J
Moment matrix      341.B
Moment method      399.L
Moment method estimator      399.L
Moment of inertia      271.E
Moment population (of order k)      396.C
Moment principal, of inertia      271.E
Moment problem Hamburger      240.K
Moment problem Hausdorff      240.K
Moment problem Stieltjes      240.K
Moment sample (of order k)      396.C
Momentum      271.A 271.E
Momentum 4-vector, energy-      258.C
Momentum angular      271.E
Momentum density, angular      150.B
Momentum generalized      271.F
Momentum integrals of angular      420.A
Momentum intrinsic angular      351.G
Momentum operator angular      258.D
Momentum operator energy-      258.D
Momentum orbital angular      351.E
Momentum phase space      126.L
Momentum representation      351.C
Momentum tensor angular      258.D
Momentum tensor energy-      150.D 359.D
Momentum, theorem of      271.E
Momentum, theorem of angular      271.E
Monad (in homology theory)      200.Q
Monad (in nonstandard analysis)      293.D
Monge differential equation      324.F
Monge — Ampere equations      278 App. Table
Monge, Gaspard(1746-1818)      107.B 109 158 181 255.E 266 267 278.A 324.F
Monic polynomial      337.A
Monin, Andrei Sergeevich      433.r
Monoclinic system      92.E
Monodromy group (of a system of linear ordinary differential equations)      253.B
Monodromy group (of an n-fold covering)      91.A
Monodromy group Milnor      418.D
Monodromy group total      418.F
Monodromy matrix      254.B
Monodromy theorem (on analytic continuation)      198.J
Monogenic function in the sense of Cauchy      198.Q
Monogenic function in the sense of E. Borel      198.Q
Monoid, unitary      409.C
Monoidal transformation (by an ideal sheaf)      16.K
Monoidal transformation (of a complex manifold)      172.H
Monoidal transformation (of an analytic space)      23.D
Monoidal transformation real      274.E
Monoidal transformation with center W      16.K
Monomial      337.B
Monomial (module)      277.D
Monomial admissible (in Steenrod algebra)      64.B
Monomial representation (of a finite group)      362.G
Monomorphism (in a category)      52.D
Monothetic group      136.D
Monotone (curve)      281.B
Monotone class      270.B
Monotone class theorem      270.B
Monotone decreasing (set function)      380.B
Monotone decreasing function      166.A
Monotone decreasing function strictly      166.A
Monotone decreasing matrix, of order m      212.C
Monotone function      166.A
Monotone function strictly      166.A
Monotone function strictly (of ordinal numbers)      312.C
Monotone increasing (set function)      380.B
Monotone increasing function      166.A
Monotone increasing function strictly      166. A
Monotone increasing matrix, of order m      212.C
Monotone likelihood ratio      374.J
Monotone mapping      311.E
Monotone operator      212.C
Monotone operator (in a Hilbert space)      286.C
Monotone sequence (of real numbers)      87.B
Monotonely very weak Bernoulli      136.F
Monotonic function, completely      240.E 240.K
Monotonically decreasing (sequence of real numbers)      87.B
Monotonically increasing (sequence of real numbers)      87.B
Monte Carlo method      385.C
Montel space      424.O
Montel theorem      435.E
Montel, Paul Antoine Aristide(1876-1975)      272.F 424.O 435.E 435.r
Montgomery, Deane(1909-)      196 249.V 249.r 423.N 431.r
Montgomery, Hugh L.(1944-)      14.L 123.E 123.r
Montucla, Jean Etienne(1725-1799)      187.r
Mook, Dent T.      290.r
Moon argument, behind-the-      351.K
Moon, Philip Burton(1907-)      130.r
Moore space      273.K 425.AA
Moore space problem, normal      425.AA
Moore — Smith convergence      87.H
Moore, Calvin C.(1936-)      122.F
Moore, Eliakim Hastings(1862-1932)      87.H 87.K 87.r
Moore, John Colemar(1923-)      147.r 200.r 203.r
Moore, John Douglas      365.J
Moore, Robert Lee(1882-1974)      65.F 273.K 425.AA 426
Moran, Patrick Alfred Pierce(1917-)      218.r
Morawetz, Cathleen Synge(1923-)      112.S 345.A
Mordell conjecture      118.E
Mordell — Weil theorem      118.E
Mordell — Weil theorem weak      118.E
Mordell, Louis Joel(1888-1972)      118.A 118.E
More informative (experiment)      398.G
Morera theorem      198.A
Morera, Giacinto(1856-1909)      198.A
Morf, Martin(1944-)      86.r
Morgan, Frank      275.C
Morgenstern solution, von Neumann-      173.D
Morgenstern, Oskar(1902-1977)      173.A 173.D 376.r
Mori, Akira(1924-1955)      352.B 352.C 367.E
Mori, Hiroshi(1944-)      275.F
Mori, Mitsuya(1927-)      59.H
Mori, Shigefumi(1951—)      16.R 16.r 364.r
Mori, Shinziro(1893-1979)      284.G
Mori, Shin’ichi(1913-)      207.C 207r
Moriguti, Sigeiti(1916-)      299.B 389.r NTR
Morimoto, Haruki(1930-)      399.r
Morimoto, Hiroko(1941-)      224.F
Morimoto, Mituo(1942-)      125.BB 125.DD 162
Morimoto,Akihiko(1927-)      110.E 126.J 344.C
Morimune, Kimio(1946-)      128.C
Morishima, Taro(1903-)      145.*
Morita, Kiiti(1915-)      8 117.A 117.C 117.E 117.r 273.K 425.S 425.X—Z 425.CC
Morita, Masato(l927-)      353.r
Morita, Reiko(1934-)      353.r
Morita, Shigeyuki(1946-)      154.G
Morita, Yasuo(l945-)      450.U
Moriya, Mikao(1906-1982)      59.G 59.H
Morlet, Claude      147.Q
Morley, Edward Williams(1838-1923)      359.A
Morley, Michael      276.F 276.r
Morphism (in a category)      52.A
Morphism (of chain complexes)      200.H
Morphism (of complexes)      13.R
Morphism (of filtered modules)      200.J
Morphism (of inductive systems)      210.D
Morphism (of unfoldings)      51.D
Morphism affine      16.D
Morphism connecting      200.H
Morphism diagonal (in a category)      52.E
Morphism etale      16.F
Morphism faithfully flat      16.D
Morphism finite      16.D
Morphism flat      16.D
Morphism Frobenius      450.P
Morphism functorial      52.J
Morphism inverse      52.D
Morphism k- (between algebraic groups)      13.A
Morphism of schemes      16.D
Morphism projective      16.E
Morphism proper (between schemes)      16.D
Morphism quasiprojective      16.E
Morphism S-      52.G
Morphism separated      16.D
Morphism shape      382.A
Morphism smooth      16.F
Morphism strict (between topological groups)      423.J
Morphism structure      52.G
Morrey, Charles Bradfield, Jr.(1907-1984)      46.r 78.r 112.D 125.A 194.F 194.r 195 246.C 275.A 275.C 275.r 323.r 334.D 350.r 352.B
Morris, Peter D.      443.H
Morrow, James      72.K
Morse function      279.B
Morse index theorem      279.F
Morse inequalities      279.D
Morse lemma      279.B
Morse theory      279
Morse theory, fundamental theorems of      279.D
Morse — Smale diffeomorphism      126.J
Morse — Smale flow      126.J
Morse — Smale vector field      126.J
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте