|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Ito K. — Encyclopedic Dictionary of Mathematics |
|
|
Предметный указатель |
Modified Fourier hyperfunction 125.BB
Modified indicator function 341.C
Modified Mathieu differential equation 268.A
Modified Mathieu function 268.A
Modified Mathieu function of the first kind 268.D
Modified Mathieu function of the second kind 268.D
Modified Mathieu function of the third kind 268.D
Modified minimum chi-square method 400.K
Modified wave operator 375.B
Modular automorphism 308.H
Modular character (of a modular representation) 362.I
Modular form Hilbert, of weight k 32.G
Modular form of level N 32.C
Modular form Siegel, of weight k 32.F
Modular form, Hilbert, of dimension, k 32.G
Modular form, Siegel, of dimension, k 32.F
Modular function (of a locally compact group) 225.D
Modular function Hilbert 32.G
Modular function of level N 32.C
Modular function Siegel, of degree n 32.F
Modular group 122.D
Modular group elliptic 122.D
Modular group Hilbert 32.G
Modular groupSiegel, of degree n 32.F
Modular lattice 243.F
Modular law (in a lattice) 243.F
Modular operator 308.H
Modular represenation (of a finite group) 362.G
Modular surface, Hilbert 15.H
Modular, weakly (in quantum mechanics) 351.L
Module(s) 277
Module(s) - 383.I
Module(s) (of a family of curves) 143.A
Module(s) (R, S)-injective 200.K
Module(s) (R, S)-projective 200.K
Module(s) A- 277.C
Module(s) Artinian 277.I
Module(s) category of left (right) R- 52.B
Module(s) character (of an algebraic group) 13.D
Module(s) coefficient 200.L
Module(s) cohomology 200.F
Module(s) connected graded 203.B
Module(s) defining (of a linear system) 16.N
Module(s) degenerate 118.D
Module(s) divisible A- 277.D
Module(s) dual 277.K
Module(s) dual graded 203.B
Module(s) duality theorem for - 422.L
Module(s) factor A- 277.C
Module(s) faithfully flat A- 211.K
Module(s) flat A- 277.K
Module(s) free 277.G
Module(s) generalized 143.B
Module(s) graded A- 200.B
Module(s) homology 200.C
Module(s) induced 277.L
Module(s) injective A- 211.K
Module(s) Jordan 231.C
Module(s) left A- 277.D
Module(s) Noetherian 277.I
Module(s) of A-homomorphisms (between A-modules) 277.E
Module(s) of boundaries 200.C
Module(s) of coboundaries 200.F
Module(s) of cocycles 200.F
Module(s) of cycles 200.C
Module(s) of finite length 277.I
Module(s) of homomorphisms (between two modules) 277.B
Module(s) of quotients of an R-module with respect to S 67.G
Module(s) of representations (of a compact group) 69.D
Module(s) over A 211.C
Module(s) projective A- 211.K
Module(s) representation (of a linear representation) 362.C
Module(s) right A- 277.D
Module(s) torsion A- 277.D
Module(s) with operator domain A 211.C
Moduli functor 16.W
Moduli scheme 16.W
Moduli scheme coarse 16.W
Moduli scheme fine 16.W
Moduli space 16.W 72.G
Moduli space local 72.G
Moduli space of curves of genus g 9.J
Modulus (= a conformal invariant) 11.B 77.E
Modulus (in Jacobi elliptic functions) 134.J App. Table
Modulus (moduli) (of a complex number) 74.B
Modulus (of a complex torus of dimension 1) 32.C
Modulus (of a congruence) 297.G
Modulus (of a locally multivalent function) 438.E
Modulus (of a ring) 77.E
Modulus (of an elliptic integral) 134.A App. Table
Modulus complementary (in Jacobi elliptic functions) 134.J App. Table
Modulus complementary (of an elliptic integral) App. A Table
Modulus local maximum, principle 164.C
Modulus maximum, principle (for a holomorphic function) 43.B
Modulus number 418.E
Modulus of continuity (of a function) 84.A
Modulus of continuity of kth order (of a continuous function) 336.C
Modulus of elasticity in shear 271.G
Modulus of elasticity in tension 271.G
Modulus of rigidity 271.G
Modulus periodicity (of an elliptic integral) 134.A
Modulus Young’s 271.G
Modulus, field of 73.B
modus ponens 411.I
Moebius band 410.B
Moebius function 66.C 295.C
Moebius geometry 76.A
Moebius strip 410.B
Moebius transformation 74.E 76.A
Moebius transformation group 76.A
Moebius, August Ferdinand(1790-1868) 66.C 74.E 76.A 267 295.C 410.B
Moedomo, S. 443.H
Mohr, Georg(1640-1697) 179.B
Moise, Edwin Evariste (1918-) 65.C 70.C 79.D 93.r 139.r 410.r
Moiseiwitseh, Benjamin Lawrence(1927-) 441.r
Moishezon criterion, Nakai- (of ampleness) 16.E
Moishezon space 16.W
Moishezon, Boris Gershevich(1937-) 16.E 16.U 16.W 72.r
Molchanov, Stanislav Alekseevich 115.D 340.r
Moldestad, Johan(1946-) 356.F 356.r
Mole numbers 419.A
Moler, CleveB.(1939-) 298.r 302.r
moment 397.C
Moment (kth) 341.B
Moment about the mean (kth) 341.B
Moment absolute (kth) 341.B
Moment bivariate 397.H
Moment central 397.C
Moment conditonal 397.I
Moment factorial 397.G
Moment generating function 177.A 341.C 397.G 397.J
Moment matrix 341.B
Moment method 399.L
Moment method estimator 399.L
Moment of inertia 271.E
Moment population (of order k) 396.C
Moment principal, of inertia 271.E
Moment problem Hamburger 240.K
Moment problem Hausdorff 240.K
Moment problem Stieltjes 240.K
Moment sample (of order k) 396.C
Momentum 271.A 271.E
Momentum 4-vector, energy- 258.C
Momentum angular 271.E
Momentum density, angular 150.B
Momentum generalized 271.F
Momentum integrals of angular 420.A
Momentum intrinsic angular 351.G
Momentum operator angular 258.D
Momentum operator energy- 258.D
| Momentum orbital angular 351.E
Momentum phase space 126.L
Momentum representation 351.C
Momentum tensor angular 258.D
Momentum tensor energy- 150.D 359.D
Momentum, theorem of 271.E
Momentum, theorem of angular 271.E
Monad (in homology theory) 200.Q
Monad (in nonstandard analysis) 293.D
Monge differential equation 324.F
Monge — Ampere equations 278 App. Table
Monge, Gaspard(1746-1818) 107.B 109 158 181 255.E 266 267 278.A 324.F
Monic polynomial 337.A
Monin, Andrei Sergeevich 433.r
Monoclinic system 92.E
Monodromy group (of a system of linear ordinary differential equations) 253.B
Monodromy group (of an n-fold covering) 91.A
Monodromy group Milnor 418.D
Monodromy group total 418.F
Monodromy matrix 254.B
Monodromy theorem (on analytic continuation) 198.J
Monogenic function in the sense of Cauchy 198.Q
Monogenic function in the sense of E. Borel 198.Q
Monoid, unitary 409.C
Monoidal transformation (by an ideal sheaf) 16.K
Monoidal transformation (of a complex manifold) 172.H
Monoidal transformation (of an analytic space) 23.D
Monoidal transformation real 274.E
Monoidal transformation with center W 16.K
Monomial 337.B
Monomial (module) 277.D
Monomial admissible (in Steenrod algebra) 64.B
Monomial representation (of a finite group) 362.G
Monomorphism (in a category) 52.D
Monothetic group 136.D
Monotone (curve) 281.B
Monotone class 270.B
Monotone class theorem 270.B
Monotone decreasing (set function) 380.B
Monotone decreasing function 166.A
Monotone decreasing function strictly 166.A
Monotone decreasing matrix, of order m 212.C
Monotone function 166.A
Monotone function strictly 166.A
Monotone function strictly (of ordinal numbers) 312.C
Monotone increasing (set function) 380.B
Monotone increasing function 166.A
Monotone increasing function strictly 166. A
Monotone increasing matrix, of order m 212.C
Monotone likelihood ratio 374.J
Monotone mapping 311.E
Monotone operator 212.C
Monotone operator (in a Hilbert space) 286.C
Monotone sequence (of real numbers) 87.B
Monotonely very weak Bernoulli 136.F
Monotonic function, completely 240.E 240.K
Monotonically decreasing (sequence of real numbers) 87.B
Monotonically increasing (sequence of real numbers) 87.B
Monte Carlo method 385.C
Montel space 424.O
Montel theorem 435.E
Montel, Paul Antoine Aristide(1876-1975) 272.F 424.O 435.E 435.r
Montgomery, Deane(1909-) 196 249.V 249.r 423.N 431.r
Montgomery, Hugh L.(1944-) 14.L 123.E 123.r
Montucla, Jean Etienne(1725-1799) 187.r
Mook, Dent T. 290.r
Moon argument, behind-the- 351.K
Moon, Philip Burton(1907-) 130.r
Moore space 273.K 425.AA
Moore space problem, normal 425.AA
Moore — Smith convergence 87.H
Moore, Calvin C.(1936-) 122.F
Moore, Eliakim Hastings(1862-1932) 87.H 87.K 87.r
Moore, John Colemar(1923-) 147.r 200.r 203.r
Moore, John Douglas 365.J
Moore, Robert Lee(1882-1974) 65.F 273.K 425.AA 426
Moran, Patrick Alfred Pierce(1917-) 218.r
Morawetz, Cathleen Synge(1923-) 112.S 345.A
Mordell conjecture 118.E
Mordell — Weil theorem 118.E
Mordell — Weil theorem weak 118.E
Mordell, Louis Joel(1888-1972) 118.A 118.E
More informative (experiment) 398.G
Morera theorem 198.A
Morera, Giacinto(1856-1909) 198.A
Morf, Martin(1944-) 86.r
Morgan, Frank 275.C
Morgenstern solution, von Neumann- 173.D
Morgenstern, Oskar(1902-1977) 173.A 173.D 376.r
Mori, Akira(1924-1955) 352.B 352.C 367.E
Mori, Hiroshi(1944-) 275.F
Mori, Mitsuya(1927-) 59.H
Mori, Shigefumi(1951—) 16.R 16.r 364.r
Mori, Shinziro(1893-1979) 284.G
Mori, Shin’ichi(1913-) 207.C 207r
Moriguti, Sigeiti(1916-) 299.B 389.r NTR
Morimoto, Haruki(1930-) 399.r
Morimoto, Hiroko(1941-) 224.F
Morimoto, Mituo(1942-) 125.BB 125.DD 162
Morimoto,Akihiko(1927-) 110.E 126.J 344.C
Morimune, Kimio(1946-) 128.C
Morishima, Taro(1903-) 145.*
Morita, Kiiti(1915-) 8 117.A 117.C 117.E 117.r 273.K 425.S 425.X—Z 425.CC
Morita, Masato(l927-) 353.r
Morita, Reiko(1934-) 353.r
Morita, Shigeyuki(1946-) 154.G
Morita, Yasuo(l945-) 450.U
Moriya, Mikao(1906-1982) 59.G 59.H
Morlet, Claude 147.Q
Morley, Edward Williams(1838-1923) 359.A
Morley, Michael 276.F 276.r
Morphism (in a category) 52.A
Morphism (of chain complexes) 200.H
Morphism (of complexes) 13.R
Morphism (of filtered modules) 200.J
Morphism (of inductive systems) 210.D
Morphism (of unfoldings) 51.D
Morphism affine 16.D
Morphism connecting 200.H
Morphism diagonal (in a category) 52.E
Morphism etale 16.F
Morphism faithfully flat 16.D
Morphism finite 16.D
Morphism flat 16.D
Morphism Frobenius 450.P
Morphism functorial 52.J
Morphism inverse 52.D
Morphism k- (between algebraic groups) 13.A
Morphism of schemes 16.D
Morphism projective 16.E
Morphism proper (between schemes) 16.D
Morphism quasiprojective 16.E
Morphism S- 52.G
Morphism separated 16.D
Morphism shape 382.A
Morphism smooth 16.F
Morphism strict (between topological groups) 423.J
Morphism structure 52.G
Morrey, Charles Bradfield, Jr.(1907-1984) 46.r 78.r 112.D 125.A 194.F 194.r 195 246.C 275.A 275.C 275.r 323.r 334.D 350.r 352.B
Morris, Peter D. 443.H
Morrow, James 72.K
Morse function 279.B
Morse index theorem 279.F
Morse inequalities 279.D
Morse lemma 279.B
Morse theory 279
Morse theory, fundamental theorems of 279.D
Morse — Smale diffeomorphism 126.J
Morse — Smale flow 126.J
Morse — Smale vector field 126.J
|
|
|
Реклама |
|
|
|