Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Law(s) arcsine (for random walk)      260.E
Law(s) associative (for addition)      294.B
Law(s) associative (for multiplication)      294.B
Law(s) associative (in a lattice)      243.A
Law(s) associative (in a ring)      368.A
Law(s) associative (in algebra of sets)      381.B
Law(s) associative (of correspondences)      358.B
Law(s) associative (of group composition)      190.A
Law(s) Blumenthai zero-one      261.B
Law(s) Brandt’s      241.C
Law(s) cancellation (for addition)      294.B
Law(s) cancellation (for multiplication)      294.B
Law(s) cancellation (in a commutative semigroup)      190.P
Law(s) commutative (for addition)      294.B 368.A
Law(s) commutative (for multiplication)      294.B 368.A
Law(s) commutative (in a lattice)      243.A
Law(s) commutative (in algebra of sets)      381.B
Law(s) commutative (of group composition)      190.A
Law(s) complementary, of quadratic reciprocity of Jacobi symbol      297.I
Law(s) complementary, of reciprocity      14.O
Law(s) complete distributive (in a lattice-ordered group)      243.G
Law(s) de Morgan’s (in a Boolean algebra)      42.A
Law(s) de Morgan’s (in algebra of sets)      381.B
Law(s) differential      107.A
Law(s) distributive (in a lattice)      243.E
Law(s) distributive (in a ring)      368.A
Law(s) distributive (in algebra of sets)      381.B
Law(s) distributive (of natural numbers)      294.B
Law(s) even-oddness conservation      150.D
Law(s) explicit reciprocity (of norm-residue symbol)      14.R 257.H
Law(s) first complementary, of quadratic reciprocity of Legendre symbol      297.I
Law(s) Gel’fand — Pyatetskii — Shapiro reciprocity (on unitary representations)      437.DD
Law(s) general associative (for group composition)      190.C
Law(s) Hewitt — Savage zero-one      342.G
Law(s) Hooke’s      271.G
Law(s) idempotent (in a lattice)      243.A
Law(s) initial (for stochastic differential equation)      406.D
Law(s) Joule’s      130.B
Law(s) Kepler’s first      271.B
Law(s) Kepler’s second      271.B
Law(s) Kepler’s third      271.B
Law(s) Kirchhoff      282.B
Law(s) Kolmogorov zero-one      342.G
Law(s) law(s) of small numbers      250.B
Law(s) Maxwell — Boltzmann distribution      402.B
Law(s) modular (in a lattice)      243.F
Law(s) Newton (on frictional stresses)      205.C
Law(s) Newton’s first      271.A
Law(s) Newton’s second      271.A
Law(s) Newton’s third      271.A
Law(s) of action and reaction      271.A
Law(s) of complementation (in a Boolean algebra)      42.A
Law(s) of composition      409.A
Law(s) of composition, external      409.A
Law(s) of composition, internal      409.A
Law(s) of cosines (on spherical triangles)      432.B App. Table
Law(s) of cosines, first      432.A App. Table
Law(s) of cosines, second      432.A App. Table
Law(s) of cotangents      App. A Table
Law(s) of excluded middle      156.C 411.L
Law(s) of inertia      271.A
Law(s) of inertia, Sylvester (for a quadratic form)      348.C
Law(s) of iterated logarithm      45.F
Law(s) of iterated logarithm, Khinchin      250.C
Law(s) of large numbers      250.B 395.B
Law(s) of large numbers, strong      250.C
Law(s) of motion      271.A
Law(s) of motion, Newton’s three      271.A
Law(s) of quadratic reciprocity of Jacobi symbol      297.I
Law(s) of quadratic reciprocity of Legendre symbol      297.I
Law(s) of reaction      271.A
Law(s) of reciprocity      14.O 297.I
Law(s) of reciprocity, Artin general      59.C
Law(s) of reciprocity, general      14.O
Law(s) of similarity, Prandtl — Glauert      205.D
Law(s) of similarity, Reynolds      205.C
Law(s) of similitude      116
Law(s) of sines      432.A App. Table
Law(s) of sines (for spherical triangles)      432.B App. Table
Law(s) of sines and cosines      App. A Table
Law(s) of symmetry (for the Hilbert norm-residue symbol)      14.R
Law(s) of tangents      App. A Table
Law(s) of universal gravitation      271.B
Law(s) Ohm      130.B 259
Law(s) reciprocity, of Shafarevich      257.H
Law(s) reflexive (for an equivalence relation)      135.A
Law(s) reflexive (for ordering)      311.A
Law(s) second complementary, of quadratic reciprocity of Legendre symbol      297.I
Law(s) symmetric (for an equivalence relation)      135.A
Law(s) transitive (for an equivalence relation)      135.A
Law(s) transitive (for ordering)      311.A
Law(s) zero-one      342.G
Lawler, Eugene L.(1933-)      66.r 281.r 376.r
Lawley, Derrick Norman      280.B 280.G 280.r 346.F 346.r
Lawson, Charles L.      302.r
Lawson, Herbert Blaine, Jr.(1942-)      80.r 154.r 178.r 275.F 275.r 364.H 365.K
Lax equivalence theorem      304.F
Lax representation      287.B 387.C
Lax — Wendroff scheme      304.F
Lax, Peter David(1926-)      112.J 112.P 112.S 204.r 274.r 304.F 321.G 325.H 345.A 345.r 375.H 387.C 387.r
Layer boundary      205.C
Layer potential of double      338.A
Layer potential of single      338.A
Layout, two-way      155.H
Lazard, Daniel(1941-)      200.K
Lazard, Michel Paul(1924-)      122.F
Lazarov, Connor(1938-)      154.H
LBA problem      31.F
LCL (lower control limit)      404.B
Le Cam theorem      399.K
Le Dung Trang(1947-)      418.I
Le Veque, William Judson(1923-)      118.r 295.r 296.r 297.r 430.r
Leadbetter, Malcolm Ross(1931 )      395.r
Leaf (leaves) (of a foliation)      154.B
Leaf compact      154.D
Leaf topology      154.D
Leaf, growth of      154.H
Learning model      346.G
Least action, principle of      441.B
Least common multiple      67.H 297.A
Least element (in an ordered set)      311.B
Least favorable a priori distribution      398.H
Least favorable distribution      400.B
Least square approximation      336.D
Least squares estimator      403.E
Least squares estimator generalized      403.E
Least squares method indirect (in econometrics)      128.C
Least squares method three-stage      128.C
Least squares method two-stage      128.C
Least squares problem, linear      302.E
Least squares, method of (for estimation)      403.E
Least squares, method of (for higher-dimensional data)      397.J
Least squares, method of (for numerical solution)      303.I
Least upper bound (ordered sets)      310.C 311.B
Lebesgue area (of a surface)      246.C
Lebesgue convergence theorem      221.C
Lebesgue decomposition theorem      270.L 380.C
Lebesgue density theorem      100.B
Lebesgue dimension      117.B
Lebesgue extension      270.D
Lebesgue integrable      221.B
Lebesgue integral      221.B
Lebesgue measurability and the Baire property      33.F
Lebesgue measurable (set)      270.G
Lebesgue measurable function      270.J
Lebesgue measure      270.G
Lebesgue measure generalized      270.E
Lebesgue measure space (with a finite $\sigma$-finite measure)      136.A
Lebesgue method of summation      379.S
Lebesgue number      273.F
Lebesgue outer measure      270.G
Lebesgue spectrum, countable      136.E
Lebesgue test (on the convergence of Fourier series)      159.B
Lebesgue theorem (on the dimension of $\mathbf{R}^n$)      117.D
Lebesgue theorem Borel —      273.H
Lebesgue theorem Cantor —      159.J
Lebesgue theorem Riemann —      159.A 160.A
Lebesgue — Radon integral      94.C
Lebesgue — Stieltjes integral      94.C 166.C
Lebesgue — Stieltjes measure      166.C 270.L
Lebesgue, H.L.      244
Lebesgue, Henri Leon(1875-1941)      20.r 22.A 84.D 93.F 94.C 94.r 117.B 117.D 117.r 120.A 120.B 120.D 136.A 136.E 156.C 159.A—C 159.J 160.A 166.C 168.B 179.r 221.A—C 244 246.C 270.D 270.E 270.G 270.J 270.L 270.r 273.F 379.S 380.C 380.D 380.r 388.B
Lebowitz, A.      134.r
Lebowitz, Joel Louis(1930-)      136.G
LeCam, Lucien(Marie)(1924-)      341.r 398.r 399.K 399.M 399.N 399.r
Ledger, Arthur Johnson(1926-)      364.r
Lee Tsung Dao(1926-)      359.C
Lee, Benjamin W.(1935-1977)      132.r
Lee, E.Bruce(1932-)      86.r
Lee, Y.W.      95.r
Leech, John      151.I
Leela, S.      163.r
Lefebvre, Henri(1905-)      101.r
Lefschetz duality theorem, Poincare —      201.O
Lefschetz fixed-point formula      450.Q
Lefschetz fixed-point theorem      153.B
Lefschetz formula, Picard —      418.F
Lefschetz number (of a continuous mapping)      153.B
Lefschetz number (of a variety)      16.P
Lefschetz pencil      16.U
Lefschetz theorem strong      16.U
Lefschetz theorem weak      16.U
Lefschetz transformation, Picard —      16.U
Lefschetz, Solomon(1884-1972)      3.A 12.B 15.B 16.P 16.U 16.V 79.r 93.r 126.A 126.r 146.r 153.B 153.C 153.r 170.r 201.A 201.E 201.O 201.r 210.r 290.r 291.r 394.r 410.r 418.F 418.I 422.r 426.* 426.r 450.Q
Left $\mathfrak{D}_l$-ideal      27 A
Left A-module      277.D
Left adjoint functor      52.K
Left adjoint linear mapping      256.Q
Left annihilator      29.H
Left Artinian ring      368.F
Left balanced functor      200.I
Left continuous      84.B
Left coset      190.C
Left coset space      423.E
Left decomposition, Peirce (in a unitary ring)      368.F
Left derivative      106.A
Left derived functor      200.I 200.Q
Left differentiable      106.A
Left distributive law      312.C
Left endpoint (of an interval)      355.C
Left exact functor      200.I
Left G-set      362.B
Left global dimension (of a ring)      200.K
Left hereditary ring      200.K
Left ideal      368.F
Left ideal integral      27.A
Left invariant Haar measure      225.C
Left invariant metric (of a topological group)      423.I
Left invariant tensor field (on a Lie group)      249.A
Left inverse element (in a ring)      368.B
Left linear space      256.A
Left Noetherian ring      368.F
Left operation      409.A
Left order (of a $\mathfrak{g}$-lattice)      27.A
Left parametrix      345.A
Left projective resolution (of an A-module)      200.C
Left projective space      343.F
Left quotient space (of a topological group)      423.E
Left regular representation (of a group)      362.B
Left regular representation (of an algebra)      362.C
Left resolution (of an A-module)      200.C
Left satellite      200.I
Left semi-integral      68.N
Left semihereditary ring      200.K
Left shunt      115.B
Left singular point (of a diffusion process)      115.B
Left translation      249.A 362.B
Left uniformity (of a topological group)      423.G
Left, limit on the      87.F
Legendre associated differential equation      393.A
Legendre coefficient      393.B
Legendre differential equation      393.B App. Table
Legendre function      393.B App. Table
Legendre function associated      App. A Table
Legendre function associated (of the first kind)      393.C App. Table
Legendre function associated (of the second kind)      393.C App. Table
Legendre function of the first kind      393.B App. Table
Legendre function of the second kind      393.B App. Table
Legendre polynomial      393.B App. Table
Legendre relation      134.F App. Table
Legendre symbol      297.H
Legendre symbol first complementary law of reciprocity of      297.I
Legendre symbol second complementary law of reciprocity of      297.I
Legendre symbol, law of quadratic reciprocity of      297.I
Legendre transform      419.C
Legendre transformation (contact transform)      82.A App. Table
Legendre — Jacobi standard form      134.A App. Table
Legendre, Adrien Marie(1752-1833)      4.D 46.C 82.A 83.B 107.A 109 123.A 134.A 134.F 145 174.A 266 296.A 296.B 297.H 297.I 342.A 393.A—C 419.C App.A Tables 15.IV 16.I IV 18.II III
Lehman, R.Sherman(1930-)      385.r 450.I
Lehmann representation, Kaellen —      150.D
Lehmann theorem      371.C
Lehmann theorem Hodges —      399.E 399.H
Lehmann weight, Kaellen —      150.D
Lehmann — Scheffe theorem      399.C
Lehmann — Stein theorem      400.B
Lehmann, Erich Leo(1917 )      371.A 371.C 371.H 371.r 396.r 399.C 399.E 399.H 399.P 399.r 400.B 400.r
Lehmann, Harry Paul(1924-)      150.D
Lehmer method      301.K
Lehmer, Derrick Henry(1905-)      145 301.K 354.B
Lehmer, Derrick Norman(1867-1938)      123.r NTR
Lehmer, Emma(1906-)      145
Lehner, Joseph(1912-)      32.r
Lehrer, G.I.      App.B Table
Lehto, Olli(1925-)      62.C 352.C
Leibenzon(Leibenson), Zinovii Lazarevich(1931-)      192.Q
Leibler (K-L) information number, Kullback —      398.G
Leibler, Richard Arthur(1914-)      398.G
Leibniz formula (in differentiation)      106.D App. Table
Leibniz test (for convergence)      379.C
Leibniz, G.W.      245
Leibniz, Gottfried Wilhelm, Freiherr von(1646-1716)      20 38 75.A 106.D 107.A 156.B 165.A 245 265 283 293.A 332 379.C App.A Tables 10.III
Leith, Cecil Eldon, Jr.(1923-)      433.C
Leja, Franciszek(Francois)(1885-1979)      48.D
Lelong, Pierre(1912-)      21.r
Lelong-Ferrand, Jacqueline(1918—)      364.r
Lemaire, Luc R.(1950-)      195.E 195.r
Lemniscate      93.H
Lemniscate Bernoulli      93.H
Length      246
Length $\pi$-(of a group)      151.F
Length (of a broken line)      139.F
Length (of a curve)      93.F 246.A
Length (of a descending chain in a lattice)      243.F
Length (of a module)      277.I
Length (of a multi-index)      112.A
Length (of a normal chain in a group)      190.G
Length (of a path)      186.F
Length (of a segment)      139.C
Length (of a Witt vector)      449.B
Length affine      110.C
Length affine arc      110.C
Length extremal (of a family of curves)      143.A
Length extremal, defined by Hersch — Pfluger      143.A
Length extremal, with weight      143.B
Length focal      180.B
Length of finite (module)      277.I
Length queue      260.H
Length wave      446
Lens space      91.C
Lens space infinite      91.C
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте