Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Nirenberg, Louis(1925-)      72.r 112.D 112.F 112.H 164.K 168.B 262.B 274.I 286.Z 286.r 304.F 320.I 323.H 323.r 345.A 345.B 365.J
Nishi, Mieo(1924-)      12.B
Nishida, Goro(1943-)      202.U
Nishida, Takaaki(1942-)      41.D 41.E 41.r 204.F 263.D 286.Z
Nishijima — Gell—Mann formula, Nakano —      132.A
Nishijima, Kazuhiko(1926-)      132.A 150.r
Nishikawa, Seiki(1948-)      195.r
Nishimori, Toshiyuki(1947-)      154.G 154.H
Nishimura, Toshio(1926-)      156.E
Nishina formula, Klein —      351.G
Nishina, Yoshio(1890-1951)      351.G
Nishino, Toshio(1932-)      21.L 21.Q
Nishiura, Yasumasa(1950-)      263.r
Nisio, Makiko(1931-)      45.r 260.J 405.r
Nitecki, Zbigniew      126.r
Nitsche formula, Gauss — Bonnet — Sasaki —      275.C
Nitsche, Johannes C.C.(1925-)      275.C 275.r 334.F 334.r
Niveau surface      193.J
Niven, Ivan(1915-)      118.r
No cycle condition      126.J
Nodal curve      391.H
Nodal domain      391.H
Nodal point      304.C
Nodal set      391.H
Node (of a curve)      93.G
Node (of a graph)      186.B 282.A
Node (of a plane algebraic curve)      9.B
Node completion      281.D
Node start      281.D
Noebeling embedding theorem, Menger —      117.D
Noebeling, Georg      117.D 246.r
Noerlund method of summation      379.Q
Noerlund, Niels Erik(1885-1981)      104.B 104.r 379.J 379.Q
Noether number, Brill-      9.E
Noether theorem      150.B
Noether, Amalie Emmy(1882-1935)      8 12.B 16.D 16.X 27.D 27.E 29.F 150.B 277.I 284.A 284.D 284.G 368.F 450.L
Noether, Max(1844-1921)      9.E 9.F 9.r 11.B 11.r 12.B 15.B 15.D 16.I 366.C
Noetherian domain      284.A
Noetherian integral domain      284.A
Noetherian local ring      284.D
Noetherian module      277.I
Noetherian ring(s)      284.A
Noetherian ring(s) left      368.F
Noetherian ring(s) right      368.F
Noetherian scheme      16.D
Noetherian scheme locally      16.D
Noetherian semilocal ring      284.D
Nogi, Tatsuo(1941-)      304.F
Nohl, Craig R.      80.r
Noise thermal      402.K
Noise white      176.D
Noisy channel      213.A
Nomizu, Katsumi(1924-)      105.r 199.r 365.H 365.N 365.r 412.r 413.r 417.r
Nomograms      19.A 19.D
Non-      450.C
Non-Abelian cohomology      200.M
Non-Archimedean geometry      155.D
Non-Archimedean valuation      14.F 439.C
Non-Bayesian approach      401.B
Non-Desarguesian geometry      155.E 343.C
Non-Euclidean angle (in a Klein model)      285.C
Non-Euclidean distance      285.C
Non-Euclidean geometry      285
Non-Euclidean hypersphere      285.C
Non-Euclidean space      285.A
Non-Newtonian fluid      205.C
Nonadaptive scheme      299.C
Nonanticipative      406.D
Nonassociative algebra      231.A
Nonatomic      168.C 443.G
Noncentral (quadric hypersurface)      7.F 350.G
Noncentral chi-square distribution      374.B
Noncentral F-distribution      374.B
Noncentral Hotelling $T^2$ statistic      374.C
Noncentral t-distribution      374.B
Noncentral Wishart distribution      374.C
Noncentral Wishart distribution p-dimensional      374.C
Noncentrality (sampling distribution)      374.B 374.C
Noncentrality matrix      374.C
Noncommutative field      149.A
Noncompact real simple Lie algebra      App. A Table
Noncompact type (symmetric Riemannian homogeneous space)      412.D
Noncomparable, mutually      379.L
Nonconforming type      304.C
Nonconvex quadratic programming      264.D
Noncooperative (game)      173.A
Nondecreasing function      166.A
Nondegenerate (analytic mapping)      23.C
Nondegenerate (bilinear form)      256.H
Nondegenerate (critical point)      106.L 279.B 286.N
Nondegenerate (function on a Hilbert manifold)      279.E
Nondegenerate (quadratic form)      348.A
Nondegenerate (representation)      437.N
Nondegenerate (sesquilinear form)      256.Q
Nondegenerate (theta-function)      3.I
Nondegenerate critical manifold      279.D 279.E
Nondegenerate divisor      3.D 16.N
Nondegenerate hypersurface      344.A
Nondegenerate Newton boundary      418.D
Nondeterministic (Turing machine)      31.B
Nondeterministic linear bounded automaton      31.D
Nondeterministic purely (weakly stationary process)      395.D
Nonelementary (Kleinian group)      234.A
Nonexpansive mapping      286.B
Nonexpansive operator      37.C
Nonhomogeneous difference equation      104.C
Nonhomogeneous n-chain (for a group)      200.M
Nonincreasing function      166.A
Nonlinear differential equation      291.D
Nonlinear filter      405.F
Nonlinear functional analysis      286
Nonlinear integral equation      217.M
Nonlinear lattice dynamics      287
Nonlinear mechanics      290.A
Nonlinear ordinary differential equations      313.A
Nonlinear ordinary differential equations (global theory)      288
Nonlinear ordinary differential equations (local theory)      289
Nonlinear oscillation      290
Nonlinear partial differential equations      320.A
Nonlinear problems      291
Nonlinear programming      264.C
Nonlinear semigroup      88.E 378.F
Nonlinear semigroup of operators      286.X
Nonmeager set      425.N
Nonmetric MDS      346.E
Nonnegative (matrix)      269.N
Nonnegative terms, series of      379.B
Nonparametric method      371
Nonparametric test      371.A
Nonpositive curvature      178.H
Nonpositive curvature, G-space with      178.H
Nonprimitive character      450.C 450.E
Nonrandomized (decision function)      398.A
Nonrandomized estimate      399.B
Nonrandomized test      400.A
Nonrecurrent (chain)      260.B
Nonrecurrent (transient)      260.B
Nonresidue, quadratic      297.H
Nonsaddle set      126.E
Nonsingular (flow)      126.G
Nonsingular (point for a flow)      126.D
Nonsingular (point of a variety)      16.F
Nonsingular mapping of class $C^1$      208.B
Nonsingular matrix      269.B
Nonsingular transformation (of a linear space)      256.B
Nonsingular transformation (on a measure space)      136.B
Nonsingular variety      16.F
Nonstandard      33.B
Nonstandard (element)      293.B
Nonstandard analysis      293
Nonstandard natural number      276.E
Nonstandard real number      276.E
Nonstandard set theory      293.E
Nonstationary oscillations      290.F
Nonsymmetric unified field theory      343.C
Nontangential maximal function      168.B
Nontangential path      333.B
Nontrivial (3-manifold)      65.E
Nontrivially (to act on a G-space)      431.A
Nonwandering      126.E
Nonwandering set      126.E
Nordin, Clas      323.M
Norguet, Francois(1932-)      21.I
Norkin, Sim Borisovich(1918-)      163.r
Norm $C^r$-      126.H
Norm (of a separable algebraic element)      149.J
Norm (of a vector)      37.B
Norm (of an algebraic element)      149.J
Norm (of an element of a general Cayley algebra)      54
Norm (of an element of a quaternion algebra)      29.D
Norm (of an operator)      37.C
Norm absolute (of an integral ideal)      14.C
Norm C*-cross      36.H
Norm form      118.D
Norm graph      251.D
Norm Hilbert — Schmidt      68.I
Norm minimum, property      223.F
Norm nuclear      68.K
Norm pseudo- (on a topological linear space)      424.F
Norm reduced (of an algebra)      362.E
Norm relative (of a fractional ideal)      14.I
Norm resolvent convergence      331.C
Norm semi- (on a topological linear space)      424.F
Norm spinorial      61.D
Norm supremum      168.B
Norm trace      68.I
Norm uniform      168.B
Norm-residue      14.P
Norm-residue symbol      14.Q
Norm-residue symbol (in local class field theory)      257.F
Norm-residue symbol Hilbert      14.R
Norm-residue symbol Hilbert — Hasse      14.R
normal      62.C 110.E 354.F
Normal (*-isomorphism)      308.C
Normal (almost contact structure)      110.E
Normal (analytic space)      23.D
Normal (current)      275.G
Normal (for a valuation)      439.H
Normal (fundamental region)      122.B
Normal (state)      351.B
Normal (weight on a von Neumann algebra)      308.D
Normal affine      110.C
Normal affine principal      110.C
Normal algebraic variety      16.F
Normal analytic structure      386.C
Normal analytically      284.D
Normal basis      172.E
Normal block bundle      147.Q
Normal bundle (of a foliation)      154.B 154.E
Normal bundle (of a submanifold)      105.L 274.E 364.C
Normal bundle (of an immersion)      114.B
Normal Cartan connection      80.N
Normal chain (in a group)      190.G
Normal chain (in a Markov chain)      260.D
Normal commutation relation      150.D
Normal connection      365.C
Normal contact Riemannian manifold      110.E
Normal continued fraction      83.E
Normal coordinate(s)      90.C
Normal coordinate(s) mapping      364.C
Normal covering      425.R
Normal crossings      16.L
Normal crossings only      16.L
Normal curvature (of a surface)      111.H
Normal density function      397.D
Normal derivative      106.G
Normal distribution      341.D 397.D App. Table
Normal distribution k-dimensional      341.D App. Table
Normal distribution logarithmic      App. A Table
Normal distribution multidimensional      App. A Table
Normal distribution Standard      341.D
Normal duration      28.I
Normal equation (in statistical data analysis)      397.J
Normal equation (in the method of least squares)      302.E 403.E
Normal estimator, best asymptotically      399.K
Normal estimator, consistent and asymptotically      399.K
Normal extension      149.G 251.K
Normal extension field, strongly      113
Normal family      435.E
Normal fiber space, Spivak      144.J
Normal form $\pi$-adic (for an ordinal number)      312.C
Normal form (of a surface)      410.B
Normal form (of differential equations)      313.B 324.E
Normal form Cantor (for an ordinal number)      312.C
Normal form Hesse (of a hyperplane)      139.H
Normal form Jordan (for a matrix)      269.G
Normal form prenex (in predicate logic)      411.J
Normal form theorem, Kleene      356.C
Normal frame      110.B
Normal function (of ordinal numbers)      312.C
Normal g-lattice      27.A
Normal invariant      114.J
Normal j-algebra      384.C
Normal k-vector bundle      114.J
Normal line      93.G App. Table
Normal linear model      403.C
Normal mapping (map)      114.J
Normal matrix      269.I
Normal model, derived (of a variety)      16.F
Normal Moore space problem      425.AA
Normal number      354.F
Normal operator      390.E
Normal operator (of Sario)      367.G
Normal PL microbundle      147.P
Normal plane      111.F
Normal point      16.F 23.D
Normal polygon      234.C
Normal principal      111.F
Normal process      176.C
Normal real form (of a complex semisimple Lie algebra)      248.Q
Normal representation      308.C
Normal ring      67.I
Normal score test, Fisher — Yates — Terry      371.C
Normal section      410.B
Normal sequence (of coverings)      425.R
Normal simple algebra      29.E
Normal space      425.Q
Normal space collectionwise      425.AA
Normal space completely      425.Q
Normal space fully      425.X
Normal space hereditarily      425.Q
Normal space perfectly      425.Q
Normal sphere bundle      274.E
Normal stress      271.G
Normal structure      276.D
Normal subgroup      190.C
Normal subgroup admissible      190.E
Normal system (of E-functions)      430.D
Normal transformation (of a sequence)      379.L
Normal valuation      439.E 439.H
Normal variety      16.F
Normal vector      105.L 111.H 364.A
Normal vector bundle      105.L
Normal vibration      318.B
Normality, asymptotic      399.K
Normalization (of a variety)      16.F
Normalization (of an analytic space)      23.D
Normalization theorem for finitely generated rings      369.D
Normalization theorem for polynomial rings      369.D
Normalized (function)      317.A
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте