|
 |
Авторизация |
|
 |
Поиск по указателям |
|
 |
|
 |
|
 |
 |
|
 |
|
Ito K. — Encyclopedic Dictionary of Mathematics |
|
 |
Предметный указатель |
Nirenberg, Louis(1925-) 72.r 112.D 112.F 112.H 164.K 168.B 262.B 274.I 286.Z 286.r 304.F 320.I 323.H 323.r 345.A 345.B 365.J
Nishi, Mieo(1924-) 12.B
Nishida, Goro(1943-) 202.U
Nishida, Takaaki(1942-) 41.D 41.E 41.r 204.F 263.D 286.Z
Nishijima — Gell—Mann formula, Nakano — 132.A
Nishijima, Kazuhiko(1926-) 132.A 150.r
Nishikawa, Seiki(1948-) 195.r
Nishimori, Toshiyuki(1947-) 154.G 154.H
Nishimura, Toshio(1926-) 156.E
Nishina formula, Klein — 351.G
Nishina, Yoshio(1890-1951) 351.G
Nishino, Toshio(1932-) 21.L 21.Q
Nishiura, Yasumasa(1950-) 263.r
Nisio, Makiko(1931-) 45.r 260.J 405.r
Nitecki, Zbigniew 126.r
Nitsche formula, Gauss — Bonnet — Sasaki — 275.C
Nitsche, Johannes C.C.(1925-) 275.C 275.r 334.F 334.r
Niveau surface 193.J
Niven, Ivan(1915-) 118.r
No cycle condition 126.J
Nodal curve 391.H
Nodal domain 391.H
Nodal point 304.C
Nodal set 391.H
Node (of a curve) 93.G
Node (of a graph) 186.B 282.A
Node (of a plane algebraic curve) 9.B
Node completion 281.D
Node start 281.D
Noebeling embedding theorem, Menger — 117.D
Noebeling, Georg 117.D 246.r
Noerlund method of summation 379.Q
Noerlund, Niels Erik(1885-1981) 104.B 104.r 379.J 379.Q
Noether number, Brill- 9.E
Noether theorem 150.B
Noether, Amalie Emmy(1882-1935) 8 12.B 16.D 16.X 27.D 27.E 29.F 150.B 277.I 284.A 284.D 284.G 368.F 450.L
Noether, Max(1844-1921) 9.E 9.F 9.r 11.B 11.r 12.B 15.B 15.D 16.I 366.C
Noetherian domain 284.A
Noetherian integral domain 284.A
Noetherian local ring 284.D
Noetherian module 277.I
Noetherian ring(s) 284.A
Noetherian ring(s) left 368.F
Noetherian ring(s) right 368.F
Noetherian scheme 16.D
Noetherian scheme locally 16.D
Noetherian semilocal ring 284.D
Nogi, Tatsuo(1941-) 304.F
Nohl, Craig R. 80.r
Noise thermal 402.K
Noise white 176.D
Noisy channel 213.A
Nomizu, Katsumi(1924-) 105.r 199.r 365.H 365.N 365.r 412.r 413.r 417.r
Nomograms 19.A 19.D
Non- 450.C
Non-Abelian cohomology 200.M
Non-Archimedean geometry 155.D
Non-Archimedean valuation 14.F 439.C
Non-Bayesian approach 401.B
Non-Desarguesian geometry 155.E 343.C
Non-Euclidean angle (in a Klein model) 285.C
Non-Euclidean distance 285.C
Non-Euclidean geometry 285
Non-Euclidean hypersphere 285.C
Non-Euclidean space 285.A
Non-Newtonian fluid 205.C
Nonadaptive scheme 299.C
Nonanticipative 406.D
Nonassociative algebra 231.A
Nonatomic 168.C 443.G
Noncentral (quadric hypersurface) 7.F 350.G
Noncentral chi-square distribution 374.B
Noncentral F-distribution 374.B
Noncentral Hotelling statistic 374.C
Noncentral t-distribution 374.B
Noncentral Wishart distribution 374.C
Noncentral Wishart distribution p-dimensional 374.C
Noncentrality (sampling distribution) 374.B 374.C
Noncentrality matrix 374.C
Noncommutative field 149.A
Noncompact real simple Lie algebra App. A Table
Noncompact type (symmetric Riemannian homogeneous space) 412.D
Noncomparable, mutually 379.L
Nonconforming type 304.C
Nonconvex quadratic programming 264.D
Noncooperative (game) 173.A
Nondecreasing function 166.A
Nondegenerate (analytic mapping) 23.C
Nondegenerate (bilinear form) 256.H
Nondegenerate (critical point) 106.L 279.B 286.N
Nondegenerate (function on a Hilbert manifold) 279.E
Nondegenerate (quadratic form) 348.A
Nondegenerate (representation) 437.N
Nondegenerate (sesquilinear form) 256.Q
Nondegenerate (theta-function) 3.I
Nondegenerate critical manifold 279.D 279.E
Nondegenerate divisor 3.D 16.N
Nondegenerate hypersurface 344.A
Nondegenerate Newton boundary 418.D
Nondeterministic (Turing machine) 31.B
Nondeterministic linear bounded automaton 31.D
Nondeterministic purely (weakly stationary process) 395.D
Nonelementary (Kleinian group) 234.A
Nonexpansive mapping 286.B
Nonexpansive operator 37.C
Nonhomogeneous difference equation 104.C
Nonhomogeneous n-chain (for a group) 200.M
Nonincreasing function 166.A
Nonlinear differential equation 291.D
Nonlinear filter 405.F
Nonlinear functional analysis 286
Nonlinear integral equation 217.M
Nonlinear lattice dynamics 287
Nonlinear mechanics 290.A
Nonlinear ordinary differential equations 313.A
Nonlinear ordinary differential equations (global theory) 288
Nonlinear ordinary differential equations (local theory) 289
Nonlinear oscillation 290
Nonlinear partial differential equations 320.A
Nonlinear problems 291
Nonlinear programming 264.C
Nonlinear semigroup 88.E 378.F
Nonlinear semigroup of operators 286.X
Nonmeager set 425.N
Nonmetric MDS 346.E
Nonnegative (matrix) 269.N
Nonnegative terms, series of 379.B
Nonparametric method 371
Nonparametric test 371.A
Nonpositive curvature 178.H
Nonpositive curvature, G-space with 178.H
Nonprimitive character 450.C 450.E
Nonrandomized (decision function) 398.A
Nonrandomized estimate 399.B
Nonrandomized test 400.A
Nonrecurrent (chain) 260.B
Nonrecurrent (transient) 260.B
Nonresidue, quadratic 297.H
Nonsaddle set 126.E
Nonsingular (flow) 126.G
Nonsingular (point for a flow) 126.D
Nonsingular (point of a variety) 16.F
Nonsingular mapping of class 208.B
Nonsingular matrix 269.B
Nonsingular transformation (of a linear space) 256.B
Nonsingular transformation (on a measure space) 136.B
Nonsingular variety 16.F
Nonstandard 33.B
Nonstandard (element) 293.B
Nonstandard analysis 293
| Nonstandard natural number 276.E
Nonstandard real number 276.E
Nonstandard set theory 293.E
Nonstationary oscillations 290.F
Nonsymmetric unified field theory 343.C
Nontangential maximal function 168.B
Nontangential path 333.B
Nontrivial (3-manifold) 65.E
Nontrivially (to act on a G-space) 431.A
Nonwandering 126.E
Nonwandering set 126.E
Nordin, Clas 323.M
Norguet, Francois(1932-) 21.I
Norkin, Sim Borisovich(1918-) 163.r
Norm - 126.H
Norm (of a separable algebraic element) 149.J
Norm (of a vector) 37.B
Norm (of an algebraic element) 149.J
Norm (of an element of a general Cayley algebra) 54
Norm (of an element of a quaternion algebra) 29.D
Norm (of an operator) 37.C
Norm absolute (of an integral ideal) 14.C
Norm C*-cross 36.H
Norm form 118.D
Norm graph 251.D
Norm Hilbert — Schmidt 68.I
Norm minimum, property 223.F
Norm nuclear 68.K
Norm pseudo- (on a topological linear space) 424.F
Norm reduced (of an algebra) 362.E
Norm relative (of a fractional ideal) 14.I
Norm resolvent convergence 331.C
Norm semi- (on a topological linear space) 424.F
Norm spinorial 61.D
Norm supremum 168.B
Norm trace 68.I
Norm uniform 168.B
Norm-residue 14.P
Norm-residue symbol 14.Q
Norm-residue symbol (in local class field theory) 257.F
Norm-residue symbol Hilbert 14.R
Norm-residue symbol Hilbert — Hasse 14.R
normal 62.C 110.E 354.F
Normal (*-isomorphism) 308.C
Normal (almost contact structure) 110.E
Normal (analytic space) 23.D
Normal (current) 275.G
Normal (for a valuation) 439.H
Normal (fundamental region) 122.B
Normal (state) 351.B
Normal (weight on a von Neumann algebra) 308.D
Normal affine 110.C
Normal affine principal 110.C
Normal algebraic variety 16.F
Normal analytic structure 386.C
Normal analytically 284.D
Normal basis 172.E
Normal block bundle 147.Q
Normal bundle (of a foliation) 154.B 154.E
Normal bundle (of a submanifold) 105.L 274.E 364.C
Normal bundle (of an immersion) 114.B
Normal Cartan connection 80.N
Normal chain (in a group) 190.G
Normal chain (in a Markov chain) 260.D
Normal commutation relation 150.D
Normal connection 365.C
Normal contact Riemannian manifold 110.E
Normal continued fraction 83.E
Normal coordinate(s) 90.C
Normal coordinate(s) mapping 364.C
Normal covering 425.R
Normal crossings 16.L
Normal crossings only 16.L
Normal curvature (of a surface) 111.H
Normal density function 397.D
Normal derivative 106.G
Normal distribution 341.D 397.D App. Table
Normal distribution k-dimensional 341.D App. Table
Normal distribution logarithmic App. A Table
Normal distribution multidimensional App. A Table
Normal distribution Standard 341.D
Normal duration 28.I
Normal equation (in statistical data analysis) 397.J
Normal equation (in the method of least squares) 302.E 403.E
Normal estimator, best asymptotically 399.K
Normal estimator, consistent and asymptotically 399.K
Normal extension 149.G 251.K
Normal extension field, strongly 113
Normal family 435.E
Normal fiber space, Spivak 144.J
Normal form -adic (for an ordinal number) 312.C
Normal form (of a surface) 410.B
Normal form (of differential equations) 313.B 324.E
Normal form Cantor (for an ordinal number) 312.C
Normal form Hesse (of a hyperplane) 139.H
Normal form Jordan (for a matrix) 269.G
Normal form prenex (in predicate logic) 411.J
Normal form theorem, Kleene 356.C
Normal frame 110.B
Normal function (of ordinal numbers) 312.C
Normal g-lattice 27.A
Normal invariant 114.J
Normal j-algebra 384.C
Normal k-vector bundle 114.J
Normal line 93.G App. Table
Normal linear model 403.C
Normal mapping (map) 114.J
Normal matrix 269.I
Normal model, derived (of a variety) 16.F
Normal Moore space problem 425.AA
Normal number 354.F
Normal operator 390.E
Normal operator (of Sario) 367.G
Normal PL microbundle 147.P
Normal plane 111.F
Normal point 16.F 23.D
Normal polygon 234.C
Normal principal 111.F
Normal process 176.C
Normal real form (of a complex semisimple Lie algebra) 248.Q
Normal representation 308.C
Normal ring 67.I
Normal score test, Fisher — Yates — Terry 371.C
Normal section 410.B
Normal sequence (of coverings) 425.R
Normal simple algebra 29.E
Normal space 425.Q
Normal space collectionwise 425.AA
Normal space completely 425.Q
Normal space fully 425.X
Normal space hereditarily 425.Q
Normal space perfectly 425.Q
Normal sphere bundle 274.E
Normal stress 271.G
Normal structure 276.D
Normal subgroup 190.C
Normal subgroup admissible 190.E
Normal system (of E-functions) 430.D
Normal transformation (of a sequence) 379.L
Normal valuation 439.E 439.H
Normal variety 16.F
Normal vector 105.L 111.H 364.A
Normal vector bundle 105.L
Normal vibration 318.B
Normality, asymptotic 399.K
Normalization (of a variety) 16.F
Normalization (of an analytic space) 23.D
Normalization theorem for finitely generated rings 369.D
Normalization theorem for polynomial rings 369.D
Normalized (function) 317.A
|
|
 |
Реклама |
 |
|
|