Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Poisson stable positively      126.E
Poisson summation formula      192.C
Poisson summation formula (of Fourier transforms)      192.C
Poisson summation formula (on a locally compact Abelian group)      192.L
Poisson, Simeon Denis(1781-1840)      5.D 5.F 82.B 105.M 126.E 159.C 168.B 192.C 192.L 193.G 198.B 260.H 266 271.F 271.G 323.A 324.C 324.D 325.D 338.A 341.D 391.J 397.F 407.D App.A Tables 19.III
Polar (in projective geometry)      343.E
Polar (relative to pairing)      424.H
Polar (with respect to a conic)      78.J
Polar coordinates      90.C
Polar coordinates geodesic      90.C
Polar coordinates tangential      90.C
Polar decomposition      251.E
Polar element (a function element in the wider sense)      198.O
Polar element (of an integral element)      428.E
Polar form (of a complex number)      74.C
Polar plane (with respect to a quadric surface)      350.C
Polar set (in potential theory)      261.D 338.H
Polar space      191.I
Polar system (in projective geometry)      343.D
Polar tetrahedron      350.C
Polar tetrahedron self-      350.C
Polar triangle      78.J
Polar triangle self-      78.J
Polarity (with respect to a quadric hypersurface)      343.E
Polarization (on an Abelian variety)      3.G
Polarization electric      130.A
Polarization inhomogeneous      3.G
Polarization magnetic      130.A
Polarization principal      3.G
Polarized (Hodge structure)      16.V
Polarized (wave)      446
Polarized Abelian variety      3.G
Polarized Jacobian variety, canonically      3.G 9.E
Pole (of a complex function)      198.D
Pole (of a function on an algebraic curve)      9.C
Pole (of a function on an algebraic variety)      16.M
Pole (of a polar of a quadric hypersurface)      158.E
Pole (of a polar plane)      350.C
Pole (of a polar with respect to a conic)      78.J
Pole (of a roulette)      93.H
Pole divisor (of a function on an algebraic variety)      16.M
Pole north (of a complex sphere)      74.D
Pole north (of a sphere)      140
Pole Regge      132.C 386.C
Pole resonance      331.F
Pole south (of a complex sphere)      74.D
Pole south (of a sphere)      140
Pole, order of      198.D
Policy      127.A 405.C
Policy Markovian      405.C
Policy optimal      127.A
Polish space      22.I 273.J
Polit, Stephen H.      136.E
Polkinghorne, John Charlton(1930-)      146.r 386.C 386.r
Pollaczek, Felix(1892-1981)      145 307.C
Pollaczek—Geiringer, H.      298.r
Polonsky, Ivan P.      223.r 299.r
Polya type      374.J
Polya type, strictly of      374.J
Polya, George(1887-1985)      20.r 48.D 48.r 66.E 88.r 121.C 211.r 228.B 228.r 272.K 339.D 374.J 429.B
Polyakov, A.M.      80.r
Polya’s enumeration theorem      66.E
Polychromatic group      92.D
Polydisk      21.B
Polygamma functions      174.B App. Table
Polygon(s)      155.F
Polygon(s) Cauchy      316.C
Polygon(s) decomposition-equal      155.F
Polygon(s) force      19.C
Polygon(s) normal      234.C
Polygon(s) plane      155.F
Polygon(s) regular      357.A
Polygon(s) simple      155.F
Polygon(s) supplementation-equal      155.F
Polygonal number of order r      4.D
Polyharmonic      193.O
Polyhedral angle, regular      357.B
Polyhedral cone, convex      89.F
Polyhedral group, regular      151.G
Polyhedral, convex rational      16.Z
Polyhedron (polyhedra) (in an affine space)      7.D
Polyhedron (polyhedra) (of a simplicial complex)      65.A 70.C
Polyhedron (polyhedra) analytic      21.G
Polyhedron (polyhedra) convex      89.A
Polyhedron (polyhedra) corner      215.C
Polyhedron (polyhedra) Euclidean      70.B
Polyhedron (polyhedra) Euler theorem on      201.F
Polyhedron (polyhedra) integer      215.C
Polyhedron (polyhedra) regular      357.B
Polyhedron (polyhedra) topological      65.A
Polymatroid      66.F
Polynomial approximation      336
Polynomial approximation theorem (for $C^\infty$-functions)      58.E
Polynomial approximationbest (in the sense of Chebyshev)      336.H
Polynomial distribution      App. A Table
Polynomial distribution negative      App. A Table
Polynomial extrapolation method      303.F
Polynomial identity (on an algebra)      29.J
Polynomial representation (of GL(V))      60.D
Polynomial ring      337.A 369
Polynomial ring of m variables      337.B
Polynomial time      71.B
Polynomial(s)      337
Polynomial(s) Alexander (of a knot)      235.C 235.D
Polynomial(s) alternating      337.I
Polynomial(s) associated Laguerre      317.D
Polynomial(s) Bernoulli      177.B
Polynomial(s) Bernshtein      336.A
Polynomial(s) Bernshtein (generalized)      418.H
Polynomial(s) characteristic (of a differential operator)      112.A 321.A
Polynomial(s) characteristic (of a linear mapping)      269.L
Polynomial(s) characteristic (of a matrix)      269.F
Polynomial(s) Chebyshev      317.D 336.H App. Table
Polynomial(s) Chebyshev orthogonal      19.G
Polynomial(s) cyclotomic      14.L
Polynomial(s) differential      113
Polynomial(s) Euler      177.C
Polynomial(s) Fourier-Hermite      176.I
Polynomial(s) Galois group of the      172.G
Polynomial(s) Gegenbauer      317.D 393.E App. Table
Polynomial(s) generalized trigonometric      18.B
Polynomial(s) Hermite      317.D
Polynomial(s) Hermite interpolation      223.E
Polynomial(s) Hilbert (of a graded R-module)      369.F
Polynomial(s) Hilbert (of a sheaf)      16.E
Polynomial(s) Hilbert (of an algebraic curve)      9.F
Polynomial(s) homogeneous of degree n      337.B
Polynomial(s) Hosokawa      235.D
Polynomial(s) in m variables      337.B
Polynomial(s) inseparable      337.G
Polynomial(s) irreducible      337.F
Polynomial(s) isobaric      32.C
Polynomial(s) Jacobi      317.D App. Table
Polynomial(s) Lagrange interpolation      223.A 336.G App. Table
Polynomial(s) Laguerre      317.D App. Table
Polynomial(s) Legendre      393.B App. Table
Polynomial(s) link      235.D
Polynomial(s) Lommel      App. A Table
Polynomial(s) minimal (of a linear mapping)      269.L
Polynomial(s) minimal (of a matrix)      269.F
Polynomial(s) minimal (of an algebraic element)      149.E
Polynomial(s) monic      337.A
Polynomial(s) Neumann      App. A Table
Polynomial(s) Newton interpolation      336.G
Polynomial(s) orthogonal      19.G App. Table
Polynomial(s) parity check      63.E
Polynomial(s) Poincare      201.B
Polynomial(s) primitive      337.D
Polynomial(s) reduced link      235.D
Polynomial(s) reducible      337.F
Polynomial(s) ring of differential      113
Polynomial(s) Sato — Bernshtein      125.EE
Polynomial(s) Schlafli      App. A Table
Polynomial(s) separable      337.G
Polynomial(s) simplest orthogonal      19.G
Polynomial(s) Snapper      16.E
Polynomial(s) Sonine      317.D App. Table
Polynomial(s) symmetric      337.I
Polynomial(s) system of orthogonal      317.D
Polynomial(s) trigonometric interpolation      336.E
Polynomial(s) ultraspherical      317.D
Polynomial(s) zonal      374.C
Polynomial(s), ring of      337.A 369
Polynomially transformable      71.E
Polytropic differential equation      291.F
Pomeranchuk theorem      386.B
Pomeranchuk, Isaak Yakovlevich(1913-1966)      386.B
Pommerenke, Christian(1933-)      48.r 77.F 169.F 438.r
Poncelet, Jean-Victor(1788-1867)      179.B 181 266 267
Pong, D.H.      345.A
Ponstein, J.      292.D
Pontryagin class(es) (of an $\mathbf{R}^n$-bundle)      56.D
Pontryagin class(es) combinatorial      56.H
Pontryagin class(es) of a manifold      56.F
Pontryagin class(es) rational      56.F
Pontryagin class(es) total      56.D
Pontryagin class(es) universal      56.D
Pontryagin duality theorem (on topological Abelian groups)      192.K 422.C
Pontryagin multiplication      203.D
Pontryagin number      56.F
Pontryagin product      203.D
Pontryagin pth power operation      64.B
Pontryagin, Lev Semenovich(1908-)      2.G 56.D 56.F 56.H 64 64.B 86.A 86.F 107.r 108.r 114.H 126.A 126.I 126.r 192.K 201.A 201.r 202.B 202.U 203.D 249.r 305.A 318.r 422.C 422.E 422.r 423.r
Ponzano, Giorgio Enrico(1939-)      146.A
Poor, Walter Andrew(1943-)      178.r
Popov ghost, Faddeev —      132.C 150.G
Popov, M.V.      291.E
Popov, Viktor Nikolaevich(1937-)      132.C 150.G
Popp, Herbert(1936-)      16.W
Population (in statistics)      397.B 401.E
Population characteristic      396.C
Population correlation coefficient      396.D
Population covariance      396.D
Population distribution      396.B 401.F
Population distribution hypothetical infinite      397.P
Population finite      373.A
Population infinite      401.E
Population kurtosis      396.C
Population mean      396.C
Population moment of order k      396.C
Population standard deviation      396.C
Population variance      396.C
Port network, M-      282.C
Port, Sidney Charles(1935-)      5.G
Port-admittance matrix      282.C
Port-impedance matrix      282.C
Porter      168.C
Porter, Alfred William(1863-1939)      116.r
Portrait, phase      126.B
Position general (complexes)      70.B
Position general (in a projective space)      343.B
Position general (of a PL mapping)      65.D
Position general, theorem      65.D
Position hyperboloid      350.D
Position method of false      301.C
Position representation      351.C
Position vector      442.A
Position vector (of a point of an aftine space)      7.A
Positive (chain complex)      200.C
Positive (class of vector bundles)      114.D
Positive (complex)      200.H
Positive (function on a C*-algebra)      308.D
Positive (functional on a C*-algebra)      36.G
Positive (Hermitian operation)      308.A
Positive (square matrix)      310.H
Positive boundary, open Riemann surface of      367.E
Positive completely (linear mapping between C*-algebras)      36.H
Positive cone, natural      308.K
Positive cycle (on an algebraic variety)      16.M
Positive definite (function)      192.B 192.J 394.C
Positive definite (Hermitian form)      348.F
Positive definite (matrix)      269.I
Positive definite (on a topological group)      36.L 437.B
Positive definite (potential)      338.D
Positive definite (sequence)      192.B
Positive definite kernel      217.H
Positive definite quadratic form      348.C
Positive direction (in a curvilinear integral)      198.B
Positive distribution      125.C
Positive divisor (of an algebraic curve)      9.C
Positive divisor (on a Riemann surface)      11.D
Positive element (in a lattice-ordered group)      243.G
Positive element (of an ordered field)      149.N
Positive element strictly      310.H
Positive element totally      14.G
Positive entropy, completely      136.E
Positive half-trajectory      126.D
Positive infinity      87.D 355.C
Positive kernel      217.H
Positive limit point      126.D
Positive matrix      269.N
Positive number      355.A
Positive operator (in vector lattices)      310.E
Positive orientation (of an oriented $C^r$-manifold)      105.F
Positive orthant      89.G
Positive part (of an element of a vector lattice)      310.B
Positive prolongational limit set, first      126.D
Positive Radon measure      270.I
Positive real function      282.C
Positive recurrent ergodic class      260.B
Positive recurrent point      260.B
Positive root (of a semisimple Lie algebra)      248.M
Positive semidefinite (operator)      251.E
Positive semidefinite kernel      217.H
Positive semidefinite matrix      269.I
Positive semidefinite quadratic form      348.C
Positive semiorbit      126.D
Positive system, symmetric      112.S 326.D
Positive terms, series of      379.B
Positive type (function of)      192.B 192.J
Positive type (sequence of)      192.B
Positive type (symmetric kernel of)      338.D
Positive variation (of a mapping)      246.H
Positive variation (of a real bounded function)      166.B
Positive Weyl chamber      248.R
Positively invariant      126.D
Positively Lagrange stable      126.E
Positively Poisson stable      126.E
Positively regular process      44.C
Positivity O-S      150.F
Positivity reflection      1S0.F
Positivity T-      150.F
Possibility      411.L
Possible construction problem      179.A
Post problem      356.D
Post theorem      356.H
Post, Emil Leon(1897-1954)      31.B 75.D 97.r 161.B 240.D 356.A 365.D 365.H 365.r
Posterior density      401.B
Posterior distribution      398.B 401.B 403.G
Posterior risk      399.F
Postliminal C*-algebra      36.H
Postnikov complex      70.G
Postnikov system (of a CW complex)      148.D
Postnikov, Aleksei Georgievich(1921—)      295.E 328.* 328.r
Postnikov, Mikhail Mikhailovich(1927-)      70.G 148.D 172.r 305.A
Poston, Tim      51.r
Postulate(s)      35.A
Postulate(s) fifth (in Euclidean geometry)      139.A
Postulate(s) Nernst      419.A
Postulate(s) Peano      294.B
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте