Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Separator      186.F
Sequence(s)      165.D
Sequence(s) (o)-convergent      87.L
Sequence(s) (o)-star convergent      87.L
Sequence(s) (R,S)-exact (of modules)      200.K
Sequence(s) admissible (in Steenrod algebra)      64.B App. Table
Sequence(s) asymptotic      30.A
Sequence(s) Blaschke      43.F
Sequence(s) Cauchy (in $\mathfrak{a}$-adic topology)      284.B
Sequence(s) Cauchy (in a metric space)      273.J
Sequence(s) Cauchy (in a uniform space)      436.G
Sequence(s) Cauchy (of rational numbers)      294.E
Sequence(s) Cauchy (of real numbers)      355.B
Sequence(s) cohomology exact      201.L
Sequence(s) cohomology spectral      200.J
Sequence(s) connected, of functors      200.I
Sequence(s) convergent (of real numbers)      87.B 355.B
Sequence(s) divergent (of real numbers)      87.B
Sequence(s) double      379.E
Sequence(s) exact (of A-homomorphisms of A-modules)      277.E
Sequence(s) exact, of cohomology      200.F
Sequence(s) exact, of Ext      200.G
Sequence(s) exact, of homology      200.C
Sequence(s) exact, of Tor      200.D
Sequence(s) Farey      4.B
Sequence(s) Fibonacci      295.A
Sequence(s) finite      165.D
Sequence(s) fundamental (in a metric space)      273.J
Sequence(s) fundamental (in a uniform space)      436.G
Sequence(s) fundamental (of rational numbers)      294.E
Sequence(s) fundamental (of real numbers)      355.B
Sequence(s) fundamental, of cross cuts (in a simply connected domain)      333.B
Sequence(s) Gysin exact (of a fiber space)      148.E
Sequence(s) Hodge spectral      16.U
Sequence(s) homology exact (for simplicial complexes)      201.L
Sequence(s) homology exact (of a fiber space)      148.E
Sequence(s) homotopy exact      202.L
Sequence(s) homotopy exact (of a fiber space)      148.D
Sequence(s) homotopy exact (of a triad)      202.M
Sequence(s) homotopy exact (of a triple)      202.L
Sequence(s) independent, of partitions      136.E
Sequence(s) infinite      165.D
Sequence(s) interpolating      43.F
Sequence(s) Jordan — Hoelder (in a group)      190.G
Sequence(s) linear recurrent      295.A
Sequence(s) Mayer — Vietoris exact      201.C
Sequence(s) minimizing      46.E
Sequence(s) monotone (of real numbers)      87.B
Sequence(s) monotonically decreasing (of real numbers)      87.B
Sequence(s) monotonically increasing (of real numbers)      87.B
Sequence(s) normal (of open coverings)      425.R
Sequence(s) null (in $\mathfrak{a}$-adic topology)      284.B
Sequence(s) of Bernoulli trials      396.B
Sequence(s) of factor groups (of a normal chain)      190.G
Sequence(s) of functions      165.B 165.D
Sequence(s) of numbers      165.D
Sequence(s) of points      165.D
Sequence(s) of positive type      192.B
Sequence(s) of sets      165.D
Sequence(s) of Ulm factors (of an Abelian p-group)      2.D
Sequence(s) oscillating (of real numbers)      87.D
Sequence(s) pointwise convergent      435.B
Sequence(s) positive definite      192.B
Sequence(s) Puppe exact      202.G
Sequence(s) random      354.E
Sequence(s) rapidly decreasing      168.B
Sequence(s) recurrent, of order r      295.A
Sequence(s) reduced homology exact      201.F
Sequence(s) regular (of Lebesgue measurable sets)      380.D
Sequence(s) regular spectral      200.J
Sequence(s) relative Mayer — Vietoris exact      201.L
Sequence(s) short exact      200.I
Sequence(s) simply convergent      435.B
Sequence(s) slowly increasing      168.B
Sequence(s) spectral      200.J
Sequence(s) spectral (of singular cohomology of a fiber space)      148.E
Sequence(s) standard      400.K
Sequence(s) symbol (in the theory of microdifferential operators)      274.F
Sequence(s) uniformly convergent      435.A
Sequence(s) Wang exact (of a fiber space)      148.E
Sequencing problem, machine      376
Sequential decision function      398.F
Sequential decision problem      398.F
Sequential decision rule      398.F
Sequential probability ratio test      400.L
Sequential sampling inspection      404.C
Sequential space      425.CC
Sequential test      400.L
Sequentially compact (space)      425.S
Seregin, L.V.      115.r
Sergner, J.A.      19.B
Serial correlation coefficient      397.N 421.B
Serial cross correlation coefficient      397.N
Series      379 App. Table
Series $\pi$- (of a group)      151.F
Series absolutely convergent      379.C
Series absolutely convergent double      379.E
Series allied (of a trigonometric series)      159.A
Series alternating      379.C
Series ascending central (of a Lie algebra)      248.C
Series asymptotic      30
Series asymptotic power      30.A
Series binomial      App. A Table
Series binomial coefficient      121.E
Series characteristic (in a group)      190.G
Series commutatively convergent      379.C
Series complementary (of unitary representations of a complex semisimple Lie group)      437.W
Series complementary degenerate (of unitary representations of a complex semisimple Lie group)      437.W
Series composition (in a group)      190.G
Series composition (in a lattice)      243.F
Series composition factor (of a composition series in a group)      190.G
Series conditionally convergent      379.C
Series conditionally convergent double      379.E
Series conjugate (of a trigonometric series)      159.A
Series convergent      379.A
Series convergent double      379.E
Series convergent power      370.B
Series convergent power, ring      370.B
Series degenerate (of unitary representations of a complex semisimple Lie group)      437.W
Series derived (of Lie algebra)      248.C
Series descending central (of a Lie algebra)      248.C
Series Dini      39.D
Series Dirichlet      121
Series Dirichlet, of the type ${\lambda_n}$      121.A
Series discrete (of unitary representations of a semisimple Lie group)      437.X
Series divergent      379.A
Series divergent double      379.E
Series double      379.E
Series Eisenstein      32.C
Series Eisenstein — Poincare      32.F
Series exponential      131.D
Series factorial      104.F 121.E
Series field of formal power, in one variable      370.A
Series finite      379.A App. Table
Series formal power      370.A
Series formal power, field in one variable      370.A
Series formal power, ring      370.A
Series Fourier      159 197.C App. Table
Series Fourier (of a distribution)      125.P
Series Fourier (of an almost periodic function)      18.B
Series Fourier cosine      App. A Table
Series Fourier sine      App. A Table
Series Fourier — Bessel      39.D
Series Gauss      206.A
Series generalized Eisenstein      450.T
Series generalized Schloemilch      39.D
Series generalized trigonometric      18.B
Series geometric      379.B App. Table
Series Heine      206.C
Series hypergeometric      206.A
Series infinite      379.A App. Table
Series iterated, by columns (of a double series)      379.E
Series iterated, by rows (of a double series)      379.E
Series Kapteyn      39.D App. Table
Series Lambert      339.C
Series Laurent      339.A
Series logarithmic      131.D
Series lower central (of a group)      190.J
Series majorant      316.G
Series majorant (of a sequence of functions)      435.A
Series Neumann      217.D
Series of nonnegative terms      379.B
Series of positive terms      379.B
Series ordinary Dirichlet      121.A
Series orthogonal (of functions)      317.A
Series oscillating      379.A
Series Poincare      32.B
Series power      21.B 339 370.A App. Table
Series power (in a complete ring)      370.A
Series power, ring      370.A
Series power, with center at the point at infinity      339.A
Series principal (in an $\Omega$-group)      190.G
Series principal (of unitary representations of a complex semisimple Lie group)      258.C 437.W
Series principal (of unitary representations of a real semisimple Lie group)      258.C 437.X
Series principal H-      437.X
Series properly divergent      379.A
Series Puiseux      339.A
Series repeated, by columns (of a double series)      379.E
Series repeated, by rows (of a double series)      379.E
Series ring of convergent power      370.B
Series ring of formal power      370.A
Series ring of power      370.A
Series Schloemilch      39.D App. Table
Series simple      379.E
Series singular      4.D
Series supplementary      258.C
Series Taylor      339.A
Series termwise integrable      216.B
Series theta      348.L
Series theta-Fuchsian, of Poincare      32.B
Series time      397.A 421.A
Series trigonometric      159.A
Series unconditionally convergent      379.C
Series uniformly absolutely convergent      435.A
Series upper central (of a group)      190.J
Serre $\mathscr{C}$-theory      202.N
Serre conjecture      369.F
Serre duality theorem (on complex manifolds)      72.E
Serre duality theorem (on projective varieties)      16.E
Serre formulas, Frenet- (on curves)      111.D App. Table
Serre theorem (for ample line bundles)      16.E
Serre, Jean-Pierre(1926-)      3.N 3.r 9.r 12.B 13.r 15.E 16.C 16.E 16.T 16.r 20 21.L 21.Q 29.r 32.D 52.N 59.H 59.r 64.B 64.r 70.r 72.E 72.K 72.r 122.F 147.K 147.O 148.A 172.r 200.K 200.M 200.r 202.N 202.U 202.r 237.J 248.r 249.r 257.r 284.G 362.r 366.D 369.F 369.r 426 428.G 450.G 450.J 450.R 450.r
Serret, Joseph Alfred(1819-1885)      111.D 238.r App.A Table
Serrin, James Burton(1926-)      275.A 275.D 323.D 323.E
Servais, C      297.D
Seshadri, Conjeeveram Srirangachari(1932-)      16.Y 16.r
Seshu, Sundaram(1926-)      282.r
Sesquilinear form (on a linear space)      256.Q
Sesquilinear form (on a product of two linear spaces)      256.Q
Sesquilinear form nondegenerate      256.Q
Sesquilinear form, matrix of      256.Q
Set function(s)      380
Set function(s) $\mu$-absolutely continuous additive      380.C
Set function(s) $\mu$-singular additive      380.C
Set function(s) additive      380.C
Set function(s) completely additive      380.C
Set function(s) finitely additive      380.B
Set function(s) monotone decreasing      380.B
Set function(s) monotone increasing      380.B
Set function(s) of bounded variation      380.B
Set theory      381.F
Set theory axiomatic      33 156.E
Set theory Bernays — Goedel      33.A 33.C
Set theory Boolean-valued      33.E
Set theory classical descriptive      356.H
Set theory effective descriptive      356.H
Set theory general      33.B
Set theory Goedel      33.C
Set theory Zermelo      33.B
Set theory Zermelo — Fraenkel      33.A 33.B
Set(s)      381
Set(s) $B_n$      22.D
Set(s) $C_n$      22.D
Set(s) $F_\sigma$      270.C
Set(s) $G_\delta$      270.C
Set(s) $P_n$      22.D
Set(s) $\alpha$-limit      126.D
Set(s) $\Delta^1_n$      22.D
Set(s) $\mathfrak{B}$-measurable      270.C
Set(s) $\mu$-measurable      270.D
Set(s) $\mu$-null      270.D
Set(s) $\omega$-limit      126.D
Set(s) $\Pi^1_1$      22.A
Set(s) $\Pi^1_n$      22.D
Set(s) $\rho$-      308.I
Set(s) $\Sigma^1_1$      22.A
Set(s) $\Sigma^1_n$      22.D
Set(s) (general) recursive      97
Set(s) A-      22.A 409.A
Set(s) absolutely convex (in a linear topological space)      424.E
Set(s) analytic      22.A 22.I
Set(s) analytic (in the theory of analytic spaces)      23.B
Set(s) analytic wave front      274.D
Set(s) analytically thin (in an analytic space)      23.D
Set(s) arbitrary      381.G
Set(s) asymptotic      62.A
Set(s) asymptotic ratio      308.I
Set(s) axiom of power      33.B 381.G
Set(s) Baire      126.H 270.C
Set(s) bargaining      173.D
Set(s) basic (for an Axiom A flow)      126.J
Set(s) basic (of a structure)      409.B
Set(s) basic open      425.F
Set(s) bifurcation      51.F 418.F
Set(s) border      425.N
Set(s) Borel (in a Euclidean space)      270.C
Set(s) Borel (in a topological space)      270.C
Set(s) Borel in the strict sense      270.C
Set(s) boundary      425.N
Set(s) boundary cluster      62.A
Set(s) bounded (in a locally convex space)      424.F
Set(s) bounded (in a metric space)      273.B
Set(s) bounded (in an affine space)      7.D
Set(s) CA      22.A
Set(s) Cantor      79.D
Set(s) catastrophe      51.F
Set(s) chain recurrent      126.E
Set(s) characteristic (of a partial differential operator)      320.B
Set(s) characteristic (of an algebraic family on a generic component)      15.F
Set(s) choice      34.A
Set(s) closed      425.B
Set(s) cluster      62.A
Set(s) coanalytic      22.A
Set(s) compact (in a metric space)      273.F
Set(s) compact (in a topological space)      425.S
Set(s) complementary      381.B
Set(s) complementary analytic      22.A
Set(s) complete      241.B
Set(s) complete orthonormal (of a Hilbert space)      197.C
Set(s) connected      79.A
Set(s) constraint (of a minimization problem)      292.A
Set(s) convex      7.D 89
Set(s) countably equivalent (under a nonsingular bimeasurable transformation)      136.C
Set(s) curvilinear cluster      62.C
Set(s) cylinder      270.H
Set(s) dense      425.N
Set(s) dependent      66.G
Set(s) derived      425.O
Set(s) determining (of a domain in $C^n$)      21.C
Set(s) difference (of blocks)      102.E
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте