Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Tensor angular momentum      258.D
Tensor antisymmetric      256.N
Tensor bundle (of a differentiable manifold)      147.F
Tensor calculus      417 App. Table
Tensor conformal curvature      App. A Table
Tensor contracted      256.L
Tensor contravariant, of degree p      256.J
Tensor correlation      433.C
Tensor covariant, of degree q      256.J
Tensor curvature      80.J 80.L 364.D 417.B
Tensor energy spectrum      433.C
Tensor energy-momentum      150.B 359.D
Tensor field      105.O
Tensor field alternating      105.O
Tensor field contravariant, of order r      105.O
Tensor field covariant derivative of (in the direction of a tangent vector)      80.I
Tensor field covariant, of order s      105.O
Tensor field left invariant (on a Lie group)      249.A
Tensor field of almost complex structure (induced by a complex structure)      72.B
Tensor field of class $C^t$      105.O
Tensor field of type (r, s) with value in E      417.E
Tensor field of type (r,s)      105.O
Tensor field parallel      364.B
Tensor field random      395.I
Tensor field right invariant (on a Lie group)      249.A
Tensor field symmetric      105.O
Tensor fundamental (of a Finsler space)      152.C
Tensor fundamental (of a Riemannian manifold)      364.A
Tensor Green      188.E
Tensor irreducible, of rank k      353.C
Tensor Maxwell stress      130.A
Tensor mixed      256.J
Tensor Nijenhuis      72.B
Tensor numerical      App. A Table
Tensor of type (p,q)      256.J
Tensor product $\varepsilon$      424.R
Tensor product (of A-homomorphisms)      277.J
Tensor product (of A-modules)      277.J
Tensor product (of algebras)      29.A
Tensor product (of chain complexes)      201.J
Tensor product (of cochain complexes)      201.J
Tensor product (of distributions)      125.K
Tensor product (of Hilbert spaces)      308.C
Tensor product (of linear mappings)      256.I
Tensor product (of linear representations)      362.C
Tensor product (of linear spaces)      256.I
Tensor product (of locally convex spaces)      424.R
Tensor product (of sheaves)      383.I
Tensor product (of vector bundles)      147.F
Tensor product (of von Neumann algebras)      308.C
Tensor product continuous      377.D
Tensor product projective $C*$-      36.H
Tensor product spatial      36.H
Tensor projective curvature      App. A Table
Tensor representation (of a general linear group)      256.M
Tensor Ricci      364.D App. Table
Tensor second fundamental      417.F
Tensor skew-symmetric      256.N
Tensor space of degree k      256.J
Tensor space of type (p,q)      256.J
Tensor strain      271.G
Tensor stress      150.B 271.G
Tensor symmetric      256.N
Tensor torsion      App. A Table
Tensor torsion (of a Frechet manifold)      286.L
Tensor torsion (of a Riemannian connection)      80.L
Tensor torsion (of an affine connection)      80.J 417.B
Tensor torsion (of an almost contact structure)      110.E
Tensor Weyl’s conformal curvature      80.P
Tensorial form      80.G
Tensorial p-form      417.C
Teplitz, Vigdor L.      146.r
ter Haar, Dick      402.r
Terada, Toshiaki(1941-)      206.D 428.H
Terano, Takao(1952-)      301.F
Terasaka, Hidetaka(1904-)      235.A 235.C
Terjanian, Guy      118.F
Term (in predicate logic)      411.H
Term (of a language)      276.A
Term (of a polynomial)      337.B
Term (of a sequence)      165.D
Term (of a series)      379.A
Term base (of a spectral sequence)      200.J
Term closed (of a language)      276.A
Term constant (of a formal power series)      370.A
Term constant (of a polynomial)      337.B
Term error      403.D
Term fiber (of a spectral sequence)      200.J
Term initial (of an infinite continued fraction)      83.A
Term nth (of sequence)      165.D
Term penalty      440.B
Term subtraction      111.B
Term undefined      35.B
Terminal decision rule      398.F
Terminal point (in a Markov process)      261.B
Terminal point (of a curvilinear integral)      94.D
Terminal point (of a path)      170
Terminal point (of a vector)      442.A
Terminal time      261.B
Terminal vertex      186.B
Termwise differentiable (infinite series with function terms)      379.H
Termwise differentiation, theorem of (on distributions)      125.G
Termwise integrable (series)      216.B
Ternary set      79.D
Terry model, Bradley —      346.C
Terry normal score test, Fisher — Yates —      371.C
Terry, Milton Everett(1916-)      346.C 371.C
Tertiary obstruction      305.D
Tertium non datur      156.C
Tesseral harmonics      393.D
test      400.A
Test Abel      379.D
Test almost invariant      400.E
Test Cauchy condensation      379.B
Test Cauchy integral      379.B
Test channel      213.E
Test chi-square      400.G
Test chi-square, of goodness of fit      400.K
Test comparison      379.B
Test consistent      400.K
Test Dini (on the convergence of Fourier series)      159.B
Test Dini — Lipschitz (on the convergence of Fourier series)      159.B
Test Dirichlet (on Abel’s partial summation)      379.D
Test Dirichlet (on the convergence of Fourier series)      159.B
Test duo-trio      346.D
Test F-      400.G
Test Fisher — Yates — Terry normal score      371.C
Test function      400.A
Test function space      125.S
Test goodness-of-fit      397.Q 401.E
Test invariant      400.E
Test Jordan (on the convergence of Fourier series)      159.B
Test Kolmogorov      45.F
Test Kolmogorov — Smirnov      371.F
Test Kruskal — Wallis      371.D
Test Lebesgue (on the convergence of Fourier series)      159.B
Test Leibniz (for convergence)      379.C
Test level $\alpha$      400.A
Test likelihood ratio      400.I
Test Mann — Whitney U-      371.C
Test minimax level $\alpha$      400.F
Test most powerful      400.A
Test most stringent level $\alpha$      400.F
Test nonparametric      371.A
Test nonrandomized      400.A
Test of du Bois — Reymond and Dedekind      379.D
Test outlier      397.Q
Test pair      346.D
Test randomized      400.A
Test sensory      346.B
Test sequential      400.L
Test sequential probability ratio      400.L
Test sign      371.B
Test signed rank      371.B
Test similar      400.D
Test statistics, Kolmogorov — Smirnov      374.E
Test Student      400.G
Test sufficient ($\sigma$-field)      396.J
Test t-      400.G
Test triangle      346.D
Test UMP in variant level $\alpha$      400.E
Test UMP unbiased level $\alpha$      400.C
Test unbiased level $\alpha$      400.C
Test uniformly consistent      400.K
Test uniformly most powerful (UMP)      400.A
Test uniformly most powerful invariant level $\alpha$      400.E
Test uniformly most powerful unbiased level $\alpha$      400.C
Test van der Waerden      371.C
Test Welch      400.G
Test Wiener (for Brownian motion)      45.D
Test Wiener (for Dirichlet problem)      338.G
Test Wiener (for random walk)      260.E
Test Wilcoxon      371.C
Test Wilcoxon signed rank      371.B
Testing hypothesis      401.C
Testing statistical hypothesis      400
Tetracyclic coordinates      90.B
Tetragamma function      174.B
Tetragonal (system)      92.E
Tetrahedral group      151.G
tetrahedron      7.D 357.B
Tetrahedron polar      350.C
Tetrahedron self-polar      350.C
Thales(c.639-c.546 B.C.)      35.A 181 187
Theaitetus(415-369 B.C.)      187
Theil, Henri(1924-)      128.r
Theodorsen function      39.E
Theodorsen, Theodore(1897-)      39.F
Theodorus(of Cyrene)(5th century B.C.)      187
Theon(of Alexandria)(fl.370)      187
Theon(of Smyrna)(fl.130)      187
Theorem A      21.L 72.E 72.F
Theorem B      21.L 72.E 72.F
Theorem(s)      see also Specific theorems
Theorem(s) Brouwer’s, on the invariance of domain      117.D
Theorem(s) cup product reduction      200.M
Theorem(s) invariance, of analytic relations      198.K
Theorem(s) kernel      125.L 424.S
Theorem(s) local limit      250.B
Theorem(s) of angular momentum      271.E
Theorem(s) of coding      273.D—F
Theorem(s) of completeness (in geometry)      155.B
Theorem(s) of identity      21.C
Theorem(s) of linear ordering (in geometry)      155.B
Theorem(s) of momentum      271.E
Theorem(s) of quasiconformal reflection      352.C
Theorem(s) of Tauberian type      339.B
Theorem(s) of termwise differentiation (of distributions)      125.G
Theorem(s) on complete form      356.H
Theorem(s) on invariance of dimension of Euclidean spaces      117.D
Theorem(s) product, for dimension      117.C
Theorem(s) structure, for von Neumann algebras of type III      308.I
Theorem(s) translation (in class field theory)      59.C
Theorem(s) translation representation      375.H
Theorem(s) transversality      105.L
Theorem(s) triangle comparison      178.A
Theorem(s) Tucker’s, on complementary slackness      255.B
Theorem(s) unicursal graph (Euler’s)      186.F
Theorem(s) Weierstrass’s, of double series      379.H
Theoretical formula      19.F
Theory Ahlfors’s, of covering surfaces      272.J 367.B
Theory Cantor’s, of real numbers      294.E
Theory class field      59
Theory classification, of Riemann surfaces      367.E
Theory combinatorial      66.A
Theory complete cohomology      200.N
Theory constructive field      150.F
Theory de Rham homotopy      114.L
Theory Dedekind’s, of real numbers      294.E
Theory dimension      117
Theory Euclidean field      150.F
Theory Euclidean Markov field      150.F
Theory exact sampling      401.F
Theory finite-displacement (of elasticity)      271.G
Theory Galois      172
Theory Galois, of differential fields      113
Theory game      173
Theory graph      186
Theory Haag — Ruelle scattering      150.D
Theory hidden variables      351.L
Theory hydromagnetic dynamo      259
Theory information      213
Theory Kaluza’s 5-dimensional      434.C
Theory large sample      401.E
Theory lattice gauge      150.G
Theory Littlewood — Paley      168.B
Theory local class field      59.G
Theory Lyusternik — Shnirel’man      286.Q
Theory Minkowski reduction (on fundamental regions)      122.E
Theory Morse      279
Theory Morse, fundamental theorems of      279.D
Theory Nevanlinna (of meromorphic functions)      124.B 272.B
Theory nonsymmetric unified field      434.C
Theory number, analytic      296.B
Theory number, elementary      297
Theory number, geometric      296. B
Theory of buildings      343.I
Theory of calculus of variations, classical      46.C
Theory of elasticity      271.G
Theory of electromagnetic waves      130.B
Theory of errors      138.A
Theory of functions      198.Q
Theory of functions of a complex variable      198.Q
Theory of gases, kinetic      402.B
Theory of perturbations, general      420.E
Theory of perturbations, special      420.E
Theory of plasticity      271.G
Theory of probability      342.A
Theory of relativity, general      359.A
Theory of relativity, special      359.A
Theory of singularities      418
Theory Peter — Weyl (on compact groups)      69.B
Theory Peter — Weyl (on compact Lie groups)      249.U
Theory Picard — Vessiot      113
Theory prediction      395.D
Theory prediction, linear      395.D
Theory proof      156.D
Theory quantum field      150.C
Theory ramified type      411.K
Theory realization      86.D
Theory risk      214.C
Theory risk, classical      214.C
Theory risk, collective      214.C
Theory risk, individual      214.C
Theory S-matrix      386.C
Theory Serre $\mathscr{C}$-      202.N
Theory set      381.F
Theory slender body      205.B
Theory small-displacement, of elasticity      271.G
Theory supermultiplet, Wigner’s      351.J
Theory syzygy      200.K
Theory thin wing      205.B
Theory Tomita — Takesaki      308.H
Theory type      411.K
Theory unified field      434.A
Theory unitary field      434.C
Thermal contact      419.A
Thermal expansion, coefficient of      419.A
Thermal noise      402.K
Thermodynamic limit      402.G
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте