Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Ito K. — Encyclopedic Dictionary of Mathematics
Ito K. — Encyclopedic Dictionary of Mathematics



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Encyclopedic Dictionary of Mathematics

Автор: Ito K.

Аннотация:

When the first edition of the Encyclopedic Dictionary of Mathematics appeared in 1977, it was immediately hailed as a landmark contribution to mathematics: "The standard reference for anyone who wants to get acquainted with any part of the mathematics of our time" (Jean Dieudonné, American Mathematical Monthly).


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2nd edition

Год издания: 1987

Количество страниц: 2120

Добавлена в каталог: 18.03.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Set(s) directed      311.D
Set(s) discrete      425.O
Set(s) disjoint      381.B
Set(s) dominating      186.I
Set(s) empty $({\O})$      381.A
Set(s) equipollent      49.A
Set(s) equipotent      49.A
Set(s) externally stable      186.I
Set(s) factor (of a crossed product)      29.D
Set(s) factor (of a projective representation)      362.J
Set(s) factor (of an extension of groups)      190.N
Set(s) family of (indexed by A)      381.D
Set(s) final (of a correspondence)      358.B
Set(s) final (of a linear operator)      251.E
Set(s) finite      49.F 381.A
Set(s) finitely equivalent (under a nonsingular bimeasurable transformation)      136.C
Set(s) first negative prolongational limit      126.D
Set(s) first positive prolongational limit      126.D
Set(s) function      380. A
Set(s) function-theoretic null      169.A
Set(s) fundamental (of a transformation group)      122.B
Set(s) fundamental open (of a transformation group)      122.B
Set(s) general Cantor      79.D
Set(s) generalized peak      164.D
Set(s) germ of an analytic      23.B
Set(s) homotopy      202.B
Set(s) idempotent (of a ring)      368.B
Set(s) increasing directed      308.A
Set(s) independent      66.G 186.I
Set(s) index      102.L
Set(s) index (of a family of elements)      381.D
Set(s) index (of a family)      165.D
Set(s) indexing (of a family of elements)      381.D
Set(s) infinite      49.F 381.A
Set(s) information      173.B
Set(s) initial (of a correspondence)      358.B
Set(s) initial (of a linear operator)      251.E
Set(s) interior cluster      62.A
Set(s) internally stable      186.I
Set(s) interpolating (for a function algebra)      164.D
Set(s) Kronecker      192.R
Set(s) lattice-ordered      243.A
Set(s) Lebesgue measurable      270.G
Set(s) Lebesgue measurable (of $\mathbf{R}^n$)      270.G
Set(s) level      279.D
Set(s) limit      234.A
Set(s) locally closed      425.J
Set(s) M-      159.J
Set(s) meager      425.N
Set(s) minimal      126.E
Set(s) n-cylinder      270.H
Set(s) nilpotent (of a ring)      368.B
Set(s) nodal      391.H
Set(s) nonmeager      425.N
Set(s) nonsaddle      120.E
Set(s) nonwandering      126.E
Set(s) nowhere dense      425.N
Set(s) null (in a measure space)      270.D 310.I
Set(s) null(${\O}$)      381.A
Set(s) null, of class $N_\mathfrak{F}$      169.E
Set(s) of analyticity      192.N
Set(s) of antisymmetry      164.E
Set(s) of degeneracy (of a holomorphic mapping between analytic spaces)      23.C
Set(s) of multiplicity      159.J
Set(s) of points of indeterminacy (of a proper meromorphic mapping)      23.D
Set(s) of quasi-analytic functions      58.F
Set(s) of the first category      425.N
Set(s) of the first kind      319.B
Set(s) of the second category      425.N
Set(s) of the second kind      319.B
Set(s) of uniqueness      159.J
Set(s) open      425.B
Set(s) ordinate      221.E
Set(s) orthogonal (of a Hilbert space)      197.C
Set(s) orthogonal (of a ring)      368.B
Set(s) orthogonal (of functions)      317.A
Set(s) orthonormal (of a Hilbert space)      197.C
Set(s) orthonormal (of functions)      317.A
Set(s) P-convex (for a differential operator)      112.C
Set(s) peak      164.D
Set(s) perfect      425.O
Set(s) point      381.B
Set(s) polar (in potential theory)      261.D 338.H
Set(s) power      381.B
Set(s) precompact (in a metric space)      273.B
Set(s) principal analytic      23.B
Set(s) projective, of class n      22.D
Set(s) purely d-dimensional analytic      23.B
Set(s) quotient (with respect to an equivalence relation)      135.B
Set(s) ratio      136.F
Set(s) recurrent      260.E
Set(s) recursive      356.D
Set(s) recursively enumerable      356.D
Set(s) regularly convex      89.G
Set(s) relative closed      425.J
Set(s) relatively compact      425.S
Set(s) relatively compact (in a metric space)      273.F
Set(s) relatively open      425.J
Set(s) removable (for a family of functions)      169.C
Set(s) residual      126.H 425.N
Set(s) resolvent (of a closed operator)      251.F
Set(s) resolvent (of a linear operator)      390.A
Set(s) S-      308.I
Set(s) saddle      126.E
Set(s) scattered      425.O
Set(s) semipolar      261.D
Set(s) Sidon      192.R 194.R
Set(s) sieved      22.B
Set(s) singularity (of a proper meromorphic mapping)      23.D
Set(s) stable      173.D
Set(s) stable, externally      186.I
Set(s) stable, internally      186.I
Set(s) standard      22.I
Set(s) strongly P-convex      112.C
Set(s) strongly separated convex      89.A
Set(s) system of closed      425.B
Set(s) system of open      425.B
Set(s) ternary      79.D
Set(s) thin (in potential theory)      261.D
Set(s) totally bounded (in a metric space)      273.B
Set(s) totally bounded (in a uniform space)      436.H
Set(s) U-      159.J
Set(s) universal (for the projective sets of class n)      22.E
Set(s) universal (of set theory)      381.B
Set(s) wandering (under a measurable transformation)      136.C
Set(s) wave front      274.B 345.A
Set(s) wave front, analytic      274.D
Set(s) weakly wandering      136.C
Set(s) weakly wandering (under a group)      136.F
Set(s) well-ordered      311.C
Set(s) Z-      382.B
Set(s) Zariski closed      16.A
Set(s) Zariski dense      16.A
Set(s) Zariski open      16.A
Set(s), capacity of      260.D
Set(s), category of      52.B
Set(s), family of      165.D 381.B 381.D
Set(s), lattice of      243.E
Set-theoretic formula      33.B
Set-theoretic topology      426
Sevast’yanov, Boris Aleksandrovich(1923-)      44.r
Severi group, Neron —(of a surface)      15.D
Severi group, Neron —(of a variety)      16.P
Severi, Francesco(1879-1961)      9.F 9.r 11.B 12.B 15.B 15.D 15.F 16.P 232.C
Sewell inequality, Roepstorff — Araki —      402.G
Sewell, Geoffrey Leon(1927-)      402.G
Sewell, Walter Edwin(1904-)      336.H
Sgarro, Andrea(1947-)      213.r
sgn P(sign)      103.A
Shabat, Aleksei Borisovich      387.F
Shadow costs      292.C
Shadow price      255.B
Shafarevich group, Tate —      118.D
Shafarevich reciprocity law      257.H
Shafarevich, Igor’ Rostislavovich(1923—)      14.r 15.r 16.r 59.F 59.H 118.D 118.E 257.H 297.r 347.r 450.Q 450.S
Shallow water wave      205.F
Shampine, Lawrence Fred(1939-)      303.r
Shaneson, Julius L.      65.D 114.J 114.K 114.r
Shanks, Daniel(1917-)      332.r
Shanks, E.B.      109.r
Shanks, William(1812-1882)      332
Shannon, Claude Elwood(1916-)      31.C 136.E 213.A 213.D—F 403.r
Shannon, Robert E.      385.r
Shape category      382.A
Shape dominate      382.A
Shape function      223.G
Shape group      382.C
Shape invariant(s)      382.C
Shape morphism      382.A
Shape pointed      382.A
Shape same      382.A
Shape theory      382
Shapiro — Lopatinskii condition      323.H
Shapiro, Harold N.(1922-)      123.D
Shapiro, Harold S.      43.r
Shapiro, Harvey L.      425.r
Shapiro, Jeremy F.      215.r 264.r
Shapiro, Zoya Yakovlevna      258.r 323.H
Shapley value      173.D
Shapley, Lloyd Stowell(1923-)      173.D 173.E
Sharkovskii, Aleksandr Nikolaevich(1936-)      126.N
Sharpe, Michael J.(1941-)      262.r
Shaw H.      75.r
Shaw, B.      251.K
Shchegol’kov(Stschegolkow), Evgenii Alekseevich(1917-)      22.r
Sheaf (in etale (Grothendieck) topology)      16.AA
Sheaf (sheaves)      383
Sheaf analytic      72.E
Sheaf associated with a presheaf      383.C
Sheaf Cech cohomology group with coefficient      383.F
Sheaf coherent algebraic      16.E 72.F
Sheaf coherent analytic      72.E
Sheaf coherent, of rings      16.E
Sheaf cohomology group with coefficient      383.E
Sheaf constant      383.D
Sheaf constructible      16.AA
Sheaf derived      125.W
Sheaf flabby      383.E
Sheaf invertible      16.E
Sheaf locally constructible (constant)      16.AA
Sheaf of $\mathscr{O}$-modules      383.I
Sheaf of Abelian groups      383.B
Sheaf of germs of analytic functions      383.D
Sheaf of germs of analytic mapping      383.D
Sheaf of germs of continuous functions      383.D
Sheaf of germs of differentiable sections of a vector bundle      383.D
Sheaf of germs of differential forms of degree of r      383.D
Sheaf of germs of functions of class $C^r$      383.D
Sheaf of germs of holomorphic functions (on an analytic manifold)      383.D
Sheaf of germs of holomorphic functions (on an analytic set)      23.C
Sheaf of germs of holomorphic functions (on an analytic space)      23.C
Sheaf of germs of regular functions      16.B
Sheaf of germs of sections of a vector bundle      383.D
Sheaf of groups      383.C
Sheaf of ideals of a divisor (of a complex manifold)      72.F
Sheaf of rings      383.C
Sheaf orientation      201.R
Sheaf pre-      383.A
Sheaf pre-, on a site      16.AA
Sheaf scattered      383.E
Sheaf space      383.C
Sheaf structure (of a prealgebraic variety)      16.C
Sheaf structure (of a ringed space)      383.H
Sheaf structure (of a variety)      16.B
Sheaf trivial      383.D
Shear viscosity, coefficient of      205.C
Shear, modules of elasticity in      271 .G
Shearing strain      271.G
Shearing stress      271.G
Sheet(s) hyperboloid of one      350.B
Sheet(s) hyperboloid of revolution of one      350.B
Sheet(s) hyperboloid of revolution of two      350.B
Sheet(s) hyperboloid of two      350.B
Sheet(s) mean number of (of a covering surface of a Riemann sphere)      272.J
Sheet(s) number of (of a covering surface)      367.B
Sheet(s) number of (of an analytic covering space)      23.E
Sheeted, n-      367.B
Shelah isomorphism theorem, Keisler —      276.E
Shelah, Saharon      33.r 276.E 276.F 276.r
Shelly, Maynard Wolfe      227.r
Shelukhin, V.V.      204.F
ShenChao-Liang(1951-)      36.H
Shenk, Norman A., II      112.P
Shepard, Roger Newland(1929-)      346.E 346.r
Sher, Richard B.(1939-)      382.D
Sherman, Seymour(1917-1977)      212.A 212.r
Shewhart, Walter Andrew(1891-1967)      401.G 404.A 404.B
Shiba, Masakazu(1944-)      367.I
Shibagaki, Wasao(1906-)      174.r App.A Table NTR
Shidlovskii, Andrei Borisovich(1915-)      430.D 430.r
Shields — Zeller theorem, Brown —      43.C
Shields, Allen Lowell(1927-)      43.G 43.r 164.J
Shields, Paul C.(1933-)      136.E 136.r 213.F
Shift      251.O
Shift associated with the stationary process      136.D
Shift automorphism      126.J
Shift Bernoulli      136.D
Shift generalized Bernoulli      136.D
Shift Markov      136.D
Shift operator      223.C 251.O 306.C
Shift operator unilateral      390.I
Shift phase      375.E 386.B
Shift transformation      136.D
Shiga, Kiyoshi(1944-)      195.r
Shiga, Koji(1930-)      72.r 147.O
Shige-eda, Shinsei(1945-)      96.r
Shikata, Yoshihiro(1936-)      178.r
Shilov boundary (for a function algebra)      164.C
Shilov boundary (of a domain)      21.D
Shilov boundary (of a Siegel domain)      384.D
Shilov generalized function, Gel’fand —      125.S
Shilov, Georgii Evgen’evich(1917-1975)      21.D 36.M 125.A 125.Q 125.S 160.r 162.r 164.C 384.D 424.r
Shimada, Nobuo(1925-)      114.B 202.S
Shimakura, Norio(1940-)      323.H 323.N
Shimidt(Schmidt), Otto Yul’evich(1891-1956)      190.L 277.I
Shimizu, Hideo(1935-)      32.H 450.L 450.r
Shimizu, Ryoichi(1931-)      374.H
Shimizu, Tatsujiro(1897-)      124.B 272.J
Shimodaira, Kazuo(1928-)      230.r
Shimura, Goro(1930-)      3.M 3.r 11.B 13.P 16.r 32.D 32.F 32.H 32.r 59.A 73.B 73.r 122.F 122.r 450.A 450.L 450.M 450.S 450.U 450.r
Shintani, Hisayoshi(1933-)      303.r
Shintani, Takuro(1943-1980)      450.A 450.E 450.G 450.V 450.r
Shioda, Tetsuji(1940-)      450.Q 450.S
Shiohama, Katsuhiro(1940-)      178.r
Shiraiwa, Kenichi(1928-)      126.J
Shirkov, Dmitril Vasil’evich(1928-)      150.r 361.r
Shiryaev, Al’bert Nikolaevich(1934-)      86.E 395.r 405.r
Shisha, Oved(1932-)      211.r
Shizuta, Yasushi(1936-)      41.D 112.P
Shmul’yan theorem      424.V
Shmul’yan theorem, Eberlein —      37.G
Shmul’yan theorem, Krein —      37.E 424.O
Shmul’yan, Yu.V.      37.E 37.G 162 424.O 424.V
Shnider, Steven David(1945-)      344.C—E
Shnirel’man theory, Lyusternik —      286.Q
Shnirel’man, Lev Genrikhovich(1905-1938)      4.A 279.G 286.Q 286.r
Shock wave      205.B 446
Shoda, Kenjiro(1902-1977)      8 29.F
Shoenfield, Joseph Robert(1927-)      22.F 22.H 22.r 97.r 156.r 185.r 411.r
Shohat, James Alexander(1886-1944)      240.r 341.r
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте