|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Ito K. — Encyclopedic Dictionary of Mathematics |
|
|
Предметный указатель |
Set(s) directed 311.D
Set(s) discrete 425.O
Set(s) disjoint 381.B
Set(s) dominating 186.I
Set(s) empty 381.A
Set(s) equipollent 49.A
Set(s) equipotent 49.A
Set(s) externally stable 186.I
Set(s) factor (of a crossed product) 29.D
Set(s) factor (of a projective representation) 362.J
Set(s) factor (of an extension of groups) 190.N
Set(s) family of (indexed by A) 381.D
Set(s) final (of a correspondence) 358.B
Set(s) final (of a linear operator) 251.E
Set(s) finite 49.F 381.A
Set(s) finitely equivalent (under a nonsingular bimeasurable transformation) 136.C
Set(s) first negative prolongational limit 126.D
Set(s) first positive prolongational limit 126.D
Set(s) function 380. A
Set(s) function-theoretic null 169.A
Set(s) fundamental (of a transformation group) 122.B
Set(s) fundamental open (of a transformation group) 122.B
Set(s) general Cantor 79.D
Set(s) generalized peak 164.D
Set(s) germ of an analytic 23.B
Set(s) homotopy 202.B
Set(s) idempotent (of a ring) 368.B
Set(s) increasing directed 308.A
Set(s) independent 66.G 186.I
Set(s) index 102.L
Set(s) index (of a family of elements) 381.D
Set(s) index (of a family) 165.D
Set(s) indexing (of a family of elements) 381.D
Set(s) infinite 49.F 381.A
Set(s) information 173.B
Set(s) initial (of a correspondence) 358.B
Set(s) initial (of a linear operator) 251.E
Set(s) interior cluster 62.A
Set(s) internally stable 186.I
Set(s) interpolating (for a function algebra) 164.D
Set(s) Kronecker 192.R
Set(s) lattice-ordered 243.A
Set(s) Lebesgue measurable 270.G
Set(s) Lebesgue measurable (of ) 270.G
Set(s) level 279.D
Set(s) limit 234.A
Set(s) locally closed 425.J
Set(s) M- 159.J
Set(s) meager 425.N
Set(s) minimal 126.E
Set(s) n-cylinder 270.H
Set(s) nilpotent (of a ring) 368.B
Set(s) nodal 391.H
Set(s) nonmeager 425.N
Set(s) nonsaddle 120.E
Set(s) nonwandering 126.E
Set(s) nowhere dense 425.N
Set(s) null (in a measure space) 270.D 310.I
Set(s) null() 381.A
Set(s) null, of class 169.E
Set(s) of analyticity 192.N
Set(s) of antisymmetry 164.E
Set(s) of degeneracy (of a holomorphic mapping between analytic spaces) 23.C
Set(s) of multiplicity 159.J
Set(s) of points of indeterminacy (of a proper meromorphic mapping) 23.D
Set(s) of quasi-analytic functions 58.F
Set(s) of the first category 425.N
Set(s) of the first kind 319.B
Set(s) of the second category 425.N
Set(s) of the second kind 319.B
Set(s) of uniqueness 159.J
Set(s) open 425.B
Set(s) ordinate 221.E
Set(s) orthogonal (of a Hilbert space) 197.C
Set(s) orthogonal (of a ring) 368.B
Set(s) orthogonal (of functions) 317.A
Set(s) orthonormal (of a Hilbert space) 197.C
Set(s) orthonormal (of functions) 317.A
Set(s) P-convex (for a differential operator) 112.C
Set(s) peak 164.D
Set(s) perfect 425.O
Set(s) point 381.B
Set(s) polar (in potential theory) 261.D 338.H
Set(s) power 381.B
Set(s) precompact (in a metric space) 273.B
Set(s) principal analytic 23.B
Set(s) projective, of class n 22.D
Set(s) purely d-dimensional analytic 23.B
Set(s) quotient (with respect to an equivalence relation) 135.B
Set(s) ratio 136.F
Set(s) recurrent 260.E
Set(s) recursive 356.D
Set(s) recursively enumerable 356.D
Set(s) regularly convex 89.G
Set(s) relative closed 425.J
Set(s) relatively compact 425.S
Set(s) relatively compact (in a metric space) 273.F
Set(s) relatively open 425.J
Set(s) removable (for a family of functions) 169.C
Set(s) residual 126.H 425.N
Set(s) resolvent (of a closed operator) 251.F
Set(s) resolvent (of a linear operator) 390.A
Set(s) S- 308.I
Set(s) saddle 126.E
Set(s) scattered 425.O
Set(s) semipolar 261.D
Set(s) Sidon 192.R 194.R
Set(s) sieved 22.B
Set(s) singularity (of a proper meromorphic mapping) 23.D
Set(s) stable 173.D
Set(s) stable, externally 186.I
Set(s) stable, internally 186.I
Set(s) standard 22.I
Set(s) strongly P-convex 112.C
Set(s) strongly separated convex 89.A
Set(s) system of closed 425.B
Set(s) system of open 425.B
Set(s) ternary 79.D
Set(s) thin (in potential theory) 261.D
Set(s) totally bounded (in a metric space) 273.B
Set(s) totally bounded (in a uniform space) 436.H
Set(s) U- 159.J
Set(s) universal (for the projective sets of class n) 22.E
Set(s) universal (of set theory) 381.B
Set(s) wandering (under a measurable transformation) 136.C
Set(s) wave front 274.B 345.A
Set(s) wave front, analytic 274.D
Set(s) weakly wandering 136.C
Set(s) weakly wandering (under a group) 136.F
Set(s) well-ordered 311.C
Set(s) Z- 382.B
Set(s) Zariski closed 16.A
Set(s) Zariski dense 16.A
Set(s) Zariski open 16.A
Set(s), capacity of 260.D
Set(s), category of 52.B
Set(s), family of 165.D 381.B 381.D
Set(s), lattice of 243.E
Set-theoretic formula 33.B
Set-theoretic topology 426
Sevast’yanov, Boris Aleksandrovich(1923-) 44.r
Severi group, Neron —(of a surface) 15.D
Severi group, Neron —(of a variety) 16.P
Severi, Francesco(1879-1961) 9.F 9.r 11.B 12.B 15.B 15.D 15.F 16.P 232.C
Sewell inequality, Roepstorff — Araki — 402.G
Sewell, Geoffrey Leon(1927-) 402.G
Sewell, Walter Edwin(1904-) 336.H
Sgarro, Andrea(1947-) 213.r
sgn P(sign) 103.A
Shabat, Aleksei Borisovich 387.F
| Shadow costs 292.C
Shadow price 255.B
Shafarevich group, Tate — 118.D
Shafarevich reciprocity law 257.H
Shafarevich, Igor’ Rostislavovich(1923—) 14.r 15.r 16.r 59.F 59.H 118.D 118.E 257.H 297.r 347.r 450.Q 450.S
Shallow water wave 205.F
Shampine, Lawrence Fred(1939-) 303.r
Shaneson, Julius L. 65.D 114.J 114.K 114.r
Shanks, Daniel(1917-) 332.r
Shanks, E.B. 109.r
Shanks, William(1812-1882) 332
Shannon, Claude Elwood(1916-) 31.C 136.E 213.A 213.D—F 403.r
Shannon, Robert E. 385.r
Shape category 382.A
Shape dominate 382.A
Shape function 223.G
Shape group 382.C
Shape invariant(s) 382.C
Shape morphism 382.A
Shape pointed 382.A
Shape same 382.A
Shape theory 382
Shapiro — Lopatinskii condition 323.H
Shapiro, Harold N.(1922-) 123.D
Shapiro, Harold S. 43.r
Shapiro, Harvey L. 425.r
Shapiro, Jeremy F. 215.r 264.r
Shapiro, Zoya Yakovlevna 258.r 323.H
Shapley value 173.D
Shapley, Lloyd Stowell(1923-) 173.D 173.E
Sharkovskii, Aleksandr Nikolaevich(1936-) 126.N
Sharpe, Michael J.(1941-) 262.r
Shaw H. 75.r
Shaw, B. 251.K
Shchegol’kov(Stschegolkow), Evgenii Alekseevich(1917-) 22.r
Sheaf (in etale (Grothendieck) topology) 16.AA
Sheaf (sheaves) 383
Sheaf analytic 72.E
Sheaf associated with a presheaf 383.C
Sheaf Cech cohomology group with coefficient 383.F
Sheaf coherent algebraic 16.E 72.F
Sheaf coherent analytic 72.E
Sheaf coherent, of rings 16.E
Sheaf cohomology group with coefficient 383.E
Sheaf constant 383.D
Sheaf constructible 16.AA
Sheaf derived 125.W
Sheaf flabby 383.E
Sheaf invertible 16.E
Sheaf locally constructible (constant) 16.AA
Sheaf of -modules 383.I
Sheaf of Abelian groups 383.B
Sheaf of germs of analytic functions 383.D
Sheaf of germs of analytic mapping 383.D
Sheaf of germs of continuous functions 383.D
Sheaf of germs of differentiable sections of a vector bundle 383.D
Sheaf of germs of differential forms of degree of r 383.D
Sheaf of germs of functions of class 383.D
Sheaf of germs of holomorphic functions (on an analytic manifold) 383.D
Sheaf of germs of holomorphic functions (on an analytic set) 23.C
Sheaf of germs of holomorphic functions (on an analytic space) 23.C
Sheaf of germs of regular functions 16.B
Sheaf of germs of sections of a vector bundle 383.D
Sheaf of groups 383.C
Sheaf of ideals of a divisor (of a complex manifold) 72.F
Sheaf of rings 383.C
Sheaf orientation 201.R
Sheaf pre- 383.A
Sheaf pre-, on a site 16.AA
Sheaf scattered 383.E
Sheaf space 383.C
Sheaf structure (of a prealgebraic variety) 16.C
Sheaf structure (of a ringed space) 383.H
Sheaf structure (of a variety) 16.B
Sheaf trivial 383.D
Shear viscosity, coefficient of 205.C
Shear, modules of elasticity in 271 .G
Shearing strain 271.G
Shearing stress 271.G
Sheet(s) hyperboloid of one 350.B
Sheet(s) hyperboloid of revolution of one 350.B
Sheet(s) hyperboloid of revolution of two 350.B
Sheet(s) hyperboloid of two 350.B
Sheet(s) mean number of (of a covering surface of a Riemann sphere) 272.J
Sheet(s) number of (of a covering surface) 367.B
Sheet(s) number of (of an analytic covering space) 23.E
Sheeted, n- 367.B
Shelah isomorphism theorem, Keisler — 276.E
Shelah, Saharon 33.r 276.E 276.F 276.r
Shelly, Maynard Wolfe 227.r
Shelukhin, V.V. 204.F
ShenChao-Liang(1951-) 36.H
Shenk, Norman A., II 112.P
Shepard, Roger Newland(1929-) 346.E 346.r
Sher, Richard B.(1939-) 382.D
Sherman, Seymour(1917-1977) 212.A 212.r
Shewhart, Walter Andrew(1891-1967) 401.G 404.A 404.B
Shiba, Masakazu(1944-) 367.I
Shibagaki, Wasao(1906-) 174.r App.A Table NTR
Shidlovskii, Andrei Borisovich(1915-) 430.D 430.r
Shields — Zeller theorem, Brown — 43.C
Shields, Allen Lowell(1927-) 43.G 43.r 164.J
Shields, Paul C.(1933-) 136.E 136.r 213.F
Shift 251.O
Shift associated with the stationary process 136.D
Shift automorphism 126.J
Shift Bernoulli 136.D
Shift generalized Bernoulli 136.D
Shift Markov 136.D
Shift operator 223.C 251.O 306.C
Shift operator unilateral 390.I
Shift phase 375.E 386.B
Shift transformation 136.D
Shiga, Kiyoshi(1944-) 195.r
Shiga, Koji(1930-) 72.r 147.O
Shige-eda, Shinsei(1945-) 96.r
Shikata, Yoshihiro(1936-) 178.r
Shilov boundary (for a function algebra) 164.C
Shilov boundary (of a domain) 21.D
Shilov boundary (of a Siegel domain) 384.D
Shilov generalized function, Gel’fand — 125.S
Shilov, Georgii Evgen’evich(1917-1975) 21.D 36.M 125.A 125.Q 125.S 160.r 162.r 164.C 384.D 424.r
Shimada, Nobuo(1925-) 114.B 202.S
Shimakura, Norio(1940-) 323.H 323.N
Shimidt(Schmidt), Otto Yul’evich(1891-1956) 190.L 277.I
Shimizu, Hideo(1935-) 32.H 450.L 450.r
Shimizu, Ryoichi(1931-) 374.H
Shimizu, Tatsujiro(1897-) 124.B 272.J
Shimodaira, Kazuo(1928-) 230.r
Shimura, Goro(1930-) 3.M 3.r 11.B 13.P 16.r 32.D 32.F 32.H 32.r 59.A 73.B 73.r 122.F 122.r 450.A 450.L 450.M 450.S 450.U 450.r
Shintani, Hisayoshi(1933-) 303.r
Shintani, Takuro(1943-1980) 450.A 450.E 450.G 450.V 450.r
Shioda, Tetsuji(1940-) 450.Q 450.S
Shiohama, Katsuhiro(1940-) 178.r
Shiraiwa, Kenichi(1928-) 126.J
Shirkov, Dmitril Vasil’evich(1928-) 150.r 361.r
Shiryaev, Al’bert Nikolaevich(1934-) 86.E 395.r 405.r
Shisha, Oved(1932-) 211.r
Shizuta, Yasushi(1936-) 41.D 112.P
Shmul’yan theorem 424.V
Shmul’yan theorem, Eberlein — 37.G
Shmul’yan theorem, Krein — 37.E 424.O
Shmul’yan, Yu.V. 37.E 37.G 162 424.O 424.V
Shnider, Steven David(1945-) 344.C—E
Shnirel’man theory, Lyusternik — 286.Q
Shnirel’man, Lev Genrikhovich(1905-1938) 4.A 279.G 286.Q 286.r
Shock wave 205.B 446
Shoda, Kenjiro(1902-1977) 8 29.F
Shoenfield, Joseph Robert(1927-) 22.F 22.H 22.r 97.r 156.r 185.r 411.r
Shohat, James Alexander(1886-1944) 240.r 341.r
|
|
|
Реклама |
|
|
|